Solveeit Logo

Question

Question: If \(A + B + C = 180^{o},\) then the value of \(\cot\frac{A}{2} + \cot\frac{B}{2} + \cot\frac{C}{2}\...

If A+B+C=180o,A + B + C = 180^{o}, then the value of cotA2+cotB2+cotC2\cot\frac{A}{2} + \cot\frac{B}{2} + \cot\frac{C}{2} will be

A

2cotA2cotB2cotC22\cot\frac{A}{2}\cot\frac{B}{2}\cot\frac{C}{2}

B

4cotA2cotB2cotC24\cot\frac{A}{2}\cot\frac{B}{2}\cot\frac{C}{2}

C

cotA2cotB2cotC2\cot\frac{A}{2}\cot\frac{B}{2}\cot\frac{C}{2}

D

8cotA2cotB2cotC28\cot\frac{A}{2}\cot\frac{B}{2}\cot\frac{C}{2}

Answer

cotA2cotB2cotC2\cot\frac{A}{2}\cot\frac{B}{2}\cot\frac{C}{2}

Explanation

Solution

A+B+C=180oA + B + C = 180^{o} A2+B2=90oC/2\therefore\frac{A}{2} + \frac{B}{2} = 90^{o} - C/2

\therefore cot(A2+B2)=cot(90oC2)\cot\left( \frac{A}{2} + \frac{B}{2} \right) = \cot\left( 90^{o} - \frac{C}{2} \right)

or cotA2.cotB21cotB2+cotA2=tanC2=1cotC2\frac{\cot\frac{A}{2}.\cot\frac{B}{2} - 1}{\cot\frac{B}{2} + \cot\frac{A}{2}} = \tan\frac{C}{2} = \frac{1}{\cot\frac{C}{2}}

or(cotA2.cotB21)cotC2=cotB2+cotA2\left( \cot\frac{A}{2}.\cot\frac{B}{2} - 1 \right)\cot\frac{C}{2} = \cot\frac{B}{2} + \cot\frac{A}{2}; cotA2.cotB2.cotC2=cotC2+cotB2+cotA2\cot\frac{A}{2}.\cot\frac{B}{2}.\cot\frac{C}{2} = \cot\frac{C}{2} + \cot\frac{B}{2} + \cot\frac{A}{2}