Solveeit Logo

Question

Question: If \(A + B + C = 180^{o},\) then the value of \((\cot B + \cot C)(\cot C + \cot A)(\cot A + \cot B)...

If A+B+C=180o,A + B + C = 180^{o}, then the value of

(cotB+cotC)(cotC+cotA)(cotA+cotB)(\cot B + \cot C)(\cot C + \cot A)(\cot A + \cot B) will be

A

secAsecBsecC\sec A\sec B\sec C

B

cosecAcosecBcosecCc\text{osec}Aco\text{sec}B\text{cosec}C

C

tanAtanBtanC\tan A\tan B\tan C

D

1

Answer

cosecAcosecBcosecCc\text{osec}Aco\text{sec}B\text{cosec}C

Explanation

Solution

cotB+cotC=sinCcosB+sinBcosCsinB.sinC\cot B + \cot C = \frac{\sin C\cos B + \sin B\cos C}{\sin B.\sin C}

=sin(B+C)sinB.sinC=sin(180oA)sinB.sinC=sinAsinB.sinC\frac{\sin(B + C)}{\sin B.\sin C} = \frac{\sin(180^{o} - A)}{\sin B.\sin C} = \frac{\sin A}{\sin B.\sin C}Similarly, cotC+cotA=sinBsinC.sinA\cot C + \cot A = \frac{\sin B}{\sin C.\sin A} and cotA+cotB=sinCsinAsinB\cot A + \cot B = \frac{\sin C}{\sin A\sin B}

Therefore, (cotB+cotC)(cotC+cotA)(cotA+cotB)(\cot B + \cot C)(\cot C + \cot A)(\cot A + \cot B)

= sinAsinB.sinC.sinBsinC.sinA.sinCsinAsinB=cosecA.cosecB.cosecC\frac{\sin A}{\sin B.\sin C}.\frac{\sin B}{\sin C.\sin A}.\frac{\sin C}{\sin A\sin B} = \text{cosec}A.\text{cosec}B.\text{cosec}C.