Solveeit Logo

Question

Question: If \(A + B + C = 180^{o},\) then \(\frac{\sin 2A + \sin 2B + \sin 2C}{\cos A + \cos B + \cos C - 1} ...

If A+B+C=180o,A + B + C = 180^{o}, then sin2A+sin2B+sin2CcosA+cosB+cosC1=\frac{\sin 2A + \sin 2B + \sin 2C}{\cos A + \cos B + \cos C - 1} =

A

8sinA2sinB2sinC28\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}

B

8cosA2cosB2cosC28\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}

C

8sinA2cosB2cosC28\sin\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}

D

8cosA2sinB2sinC28\cos\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}

Answer

8cosA2cosB2cosC28\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}

Explanation

Solution

Here Dr=4sinA2sinB2sinC2D^{r} = 4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}and Nr=4sinAsinBsincN^{r} = 4\sin A\sin B\sin c

L.H.S.=NrDr\therefore L.H.S. = \frac{N^{r}}{D^{r}}and sinA=2sinA2cosA2\sin A = 2\sin\frac{A}{2}\cos\frac{A}{2} .