Solveeit Logo

Question

Mathematics Question on Matrices

If A+B+C=180A + B + C = 180^\circ, then the value of [110\[0.3em]cosCcotAcotA\[0.3em]cotBcotCcotB]\begin{bmatrix} 1& 1 & 0 \\\[0.3em] -\cos\,C & \cot\, A & -\cot\, A \\\[0.3em] -\cot\,B & \cot\,C & \cot\, B \end{bmatrix} is

A

1+cotAcotB1 + \cot A \cot B

B

1+cotBcotC1 + \cot B \cot C

C

1+cotCcotA1 + \cot C \cot A

D

none of these.

Answer

1+cotAcotB1 + \cot A \cot B

Explanation

Solution

110\[0.3em]cosCcotAcotA\[0.3em]cotBcotCcotB\begin{vmatrix} 1& 1 & 0 \\\[0.3em] -\cos\,C & \cot\, A & -\cot\, A \\\[0.3em] -\cot\,B & \cot\,C & \cot\, B \end{vmatrix} = 110\[0.3em]cosCcotA+cotCcotA\[0.3em]cotBcotB+cotCcotB\begin{vmatrix} 1& 1 & 0 \\\[0.3em] -\cos\,C & \cot\, A +\cot \, C & -\cot\, A \\\[0.3em] -\cot\,B & \cot \, B + \cot\,C & \cot\, B \end{vmatrix} = cotAcotB+cotBcotC+cotAcotB+cotAcotC \cot A \cot B + \cot B \cot C + \cot A \cot B + \cot A \cot C = cotAcotB+(cotAcotB+cotBcotC+cotCcotA) \cot A \cot B + (\cot A \cot B + \cot B \cot C + \cot C \cot A) Since A+B+C=108A + B + C = 108^\circ tan(A+B)=tan(180C)=tanC\therefore\: \tan (A + B) = \tan (180^\circ - C) = - \tan C \Rightarrow tanAtanB1tanAtanB=tanC\frac{\tan \,A \,\tan \,B }{1 - \tan \, A \, \tan \, B} = - \, \tan \, C tanA+tanB+tanC=tanAtanBtanC\Rightarrow \: \tan A + \tan B + \tan C = \tan A \tan B \tan C tanAtanAtanBtanC+tanBtanAtanBtanC+tanCtanAtanBtanC=1\Rightarrow\:\: \frac{\tan \, A}{\tan\, A\, \tan\, B\, \tan \,C } + \frac{\tan \, B}{\tan\, A\, \tan\, B\, \tan \,C } +\frac {\tan \,C}{\tan\, A\, \tan\, B\, \tan \,C } = 1 cotBcotC+cotCcotA+cotAcotB=1\Rightarrow\: \cot B \cot C + \cot C \cot A + \cot A \cot B = 1 \therefore given value = 1+cotAcotB1 + \cot A \cot B