Question
Mathematics Question on Matrices
If A+B+C=180∘, then the value of 1\[0.3em]−cosC\[0.3em]−cotB1cotAcotC0−cotAcotB is
A
1+cotAcotB
B
1+cotBcotC
C
1+cotCcotA
D
none of these.
Answer
1+cotAcotB
Explanation
Solution
1\[0.3em]−cosC\[0.3em]−cotB1cotAcotC0−cotAcotB = 1\[0.3em]−cosC\[0.3em]−cotB1cotA+cotCcotB+cotC0−cotAcotB = cotAcotB+cotBcotC+cotAcotB+cotAcotC = cotAcotB+(cotAcotB+cotBcotC+cotCcotA) Since A+B+C=108∘ ∴tan(A+B)=tan(180∘−C)=−tanC ⇒ 1−tanAtanBtanAtanB=−tanC ⇒tanA+tanB+tanC=tanAtanBtanC ⇒tanAtanBtanCtanA+tanAtanBtanCtanB+tanAtanBtanCtanC=1 ⇒cotBcotC+cotCcotA+cotAcotB=1 ∴ given value = 1+cotAcotB