Solveeit Logo

Question

Question: If \(A+B+C={{180}^{\circ }}\), then the value of \[\left( \cot \text{B}+\cot \text{C} \right)\left( ...

If A+B+C=180A+B+C={{180}^{\circ }}, then the value of (cotB+cotC)(cotC+cotA)(cotA+cotB)\left( \cot \text{B}+\cot \text{C} \right)\left( \cot \text{C}+\cot \text{A} \right)\left( \cot \text{A}+\cot \text{B} \right)will be
a) secAsecBsecC\sec \text{A}\sec \text{B}\sec \text{C}
b) cosecA cosecB cosecC\text{cosecA cosecB cosecC}
c) tanAtanBtanC\tan \text{A}\tan \text{B}\tan \text{C}
c) 1

Explanation

Solution

Since we are given that: A+B+C=180A+B+C={{180}^{\circ }}. We can write, A+B=180CA+B={{180}^{\circ }}-C. Apply sine on both sides of the equation, we get:
sin(A+B)=sin(180C) sin(A+B)=sinC \begin{aligned} & \sin \left( A+B \right)=\sin \left( {{180}^{\circ }}-C \right) \\\ & \sin \left( A+B \right)=\sin C \\\ \end{aligned}
Since we need to find the values of cotangent of given angles, we can find value of cosine and sine of given angles and divide them.
Therefore, we can write:
cotA=cosAsinA;cotB=cosBsinB;cotC=cosCsinC\cot A=\dfrac{\cos A}{\sin A};\cot B=\dfrac{\cos B}{\sin B};\cot C=\dfrac{\cos C}{\sin C}
Substitute the values in the expression (cotB+cotC)(cotC+cotA)(cotA+cotB)\left( \cot \text{B}+\cot \text{C} \right)\left( \cot \text{C}+\cot \text{A} \right)\left( \cot \text{A}+\cot \text{B} \right) and solve the equation to get the value.

Complete step by step answer:
We have the following expression to solve: (cotB+cotC)(cotC+cotA)(cotA+cotB)\left( \cot \text{B}+\cot \text{C} \right)\left( \cot \text{C}+\cot \text{A} \right)\left( \cot \text{A}+\cot \text{B} \right)
Let us solve for (cotA+cotB)\left( \cot A+\cot B \right)first.
We can write this expression as:
(cotA+cotB)=(cosAsinA+cosBsinB) =cosAsinB+cosBsinAsinAsinB......(1)\begin{aligned} & \left( \cot A+\cot B \right)=\left( \dfrac{\cos A}{\sin A}+\dfrac{\cos B}{\sin B} \right) \\\ & =\dfrac{\cos A\sin B+\cos B\sin A}{\sin A\sin B}......(1) \end{aligned}
Similarly, for (cotB+cotC)\left( \cot B+\cot C \right)
(cotB+cotC)=(cosBsinB+cosCsinC) =cosBsinC+cosCsinBsinBsinC......(2)\begin{aligned} & \left( \cot B+\cot C \right)=\left( \dfrac{\cos B}{\sin B}+\dfrac{\cos C}{\sin C} \right) \\\ & =\dfrac{\cos B\sin C+\cos C\sin B}{\sin B\sin C}......(2) \end{aligned}
And for (cotA+cotC)\left( \cot A+\cot C \right)
(cotA+cotC)=(cosAsinA+cosCsinC) =cosAsinC+cosCsinAsinAsinC......(3)\begin{aligned} & \left( \cot A+\cot C \right)=\left( \dfrac{\cos A}{\sin A}+\dfrac{\cos C}{\sin C} \right) \\\ & =\dfrac{\cos A\sin C+\cos C\sin A}{\sin A\sin C}......(3) \end{aligned}

By applying identity: (sin(A+B)=sinAcosB+cosAsinB)\left( \sin \left( A+B \right)=\sin A\cos B+\cos A\sin B \right) in equation (1), we can write:
(cotA+cotB)=sin(A+B)sinAsinB......(4)\left( \cot A+\cot B \right)=\dfrac{\sin \left( A+B \right)}{\sin A\sin B}......(4)
Similarly, applying the sine-addition identity in equation (2) and (3), we get:
(cotB+cotC)=sin(B+C)sinBsinC......(5)\left( \cot B+\cot C \right)=\dfrac{\sin \left( B+C \right)}{\sin B\sin C}......(5)
(cotA+cotC)=sin(A+C)sinAsinC......(6)\left( \cot A+\cot C \right)=\dfrac{\sin \left( A+C \right)}{\sin A\sin C}......(6)

Since we are given that: A+B+C=180A+B+C={{180}^{\circ }}. We can write, A+B=180CA+B={{180}^{\circ }}-C.
Apply sine on both sides of the equation, we get:
sin(A+B)=sin(180C) sin(A+B)=sinC \begin{aligned} & \sin \left( A+B \right)=\sin \left( {{180}^{\circ }}-C \right) \\\ & \sin \left( A+B \right)=\sin C \\\ \end{aligned}
[sin(180θ)=sinθ]\left[ \because \sin \left( {{180}^{\circ }}-\theta \right)=\sin \theta \right]

Substitute the value of sin(A+B)\sin \left( A+B \right) in equation (4), we get:
(cotA+cotB)=sinCsinAsinB......(7)\left( \cot A+\cot B \right)=\dfrac{\sin C}{\sin A\sin B}......(7)
Similarly,

& \left( \cot B+\cot C \right)=\dfrac{\sin A}{\sin B\sin C}......(8) \\\ & \left( \cot A+\cot C \right)=\dfrac{\sin B}{\sin A\sin C}......(9) \\\ \end{aligned}$$ Now, multiply equation (7), (8) and (9), we get: $$$$$$\begin{aligned} & \left( \cot \text{B}+\cot \text{C} \right)\left( \cot \text{C}+\cot \text{A} \right)\left( \cot \text{A}+\cot \text{B} \right) \\\ & =\dfrac{\sin A}{\sin B\sin C}\times \dfrac{\sin B}{\sin A\sin C}\times \dfrac{\sin C}{\sin A\sin B} \\\ & =\dfrac{1}{\sin A\sin B\sin C}......(10) \\\ \end{aligned}$$ Since, $$\dfrac{1}{\sin \theta }=\text{cosec }\theta $$ So, we can write equation (10) as: $$\begin{aligned} & \left( \cot \text{B}+\cot \text{C} \right)\left( \cot \text{C}+\cot \text{A} \right)\left( \cot \text{A}+\cot \text{B} \right) \\\ & =\cos \text{ec}A\cos \text{ec}B\cos \text{ec}C \\\ \end{aligned}$$ **So, the correct answer is “Option B”.** **Note:** There is another method to solve the expression. We can assume that A = B = C. So, we get the value of A, B and C = $${{60}^{\circ }}$$. Put the values of cotangent of $${{60}^{\circ }}$$and solve the expression. For the given expression: $$\left( \cot \text{B}+\cot \text{C} \right)\left( \cot \text{C}+\cot \text{A} \right)\left( \cot \text{A}+\cot \text{B} \right)$$, for $$\cot {{60}^{\circ }}=\dfrac{1}{\sqrt{3}}$$, we can write: $$$$$$\begin{aligned} & \left( \cot \text{B}+\cot \text{C} \right)\left( \cot \text{C}+\cot \text{A} \right)\left( \cot \text{A}+\cot \text{B} \right) \\\ & =\left( \cot {{60}^{\circ }}+\cot {{60}^{\circ }} \right)\left( \cot {{60}^{\circ }}+\cot {{60}^{\circ }} \right)\left( \cot {{60}^{\circ }}+\cot {{60}^{\circ }} \right) \\\ & =\left( \dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{3}} \right)\left( \dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{3}} \right)\left( \dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{3}} \right) \\\ & =\dfrac{\left( 2\sqrt{3} \right)\left( 2\sqrt{3} \right)\left( 2\sqrt{3} \right)}{3\sqrt{3}} \\\ & =8 \\\ \end{aligned}$$ Now, go for the given options. Check if any option satisfies with the given angle.