Solveeit Logo

Question

Question: If \(A + B + C = {180^ \circ }\), then \(\sum\limits_{}^{} {\tan \dfrac{A}{2}\tan \dfrac{B}{2}} \) i...

If A+B+C=180A + B + C = {180^ \circ }, then tanA2tanB2\sum\limits_{}^{} {\tan \dfrac{A}{2}\tan \dfrac{B}{2}} is equal to:

A.0
B.1
C.2
D.3

Explanation

Solution

Hint: Divide the equation A+B+C=180A + B + C = {180^ \circ }by 2 and then take tangent on both sides of the equation and solve the question then.

Complete step-by-step answer:

Given in the question, A+B+C=180A + B + C = {180^ \circ }
Dividing the given equation by 2 on both sides, we get-
A2+B2+C2=90 A2+B2=90C2  \dfrac{A}{2} + \dfrac{B}{2} + \dfrac{C}{2} = {90^ \circ } \\\ \Rightarrow \dfrac{A}{2} + \dfrac{B}{2} = {90^ \circ } - \dfrac{C}{2} \\\

Taking tangent both sides, we get-
tan(A2+B2)=tan(90C2) tan(A2+B2)=cot(C2)  \Rightarrow \tan \left( {\dfrac{A}{2} + \dfrac{B}{2}} \right) = \tan \left( {{{90}^ \circ } - \dfrac{C}{2}} \right) \\\ \Rightarrow \tan \left( {\dfrac{A}{2} + \dfrac{B}{2}} \right) = \cot \left( {\dfrac{C}{2}} \right) \\\
{Since, tan(90C2)=cotC2\tan \left( {{{90}^ \circ } - \dfrac{C}{2}} \right) = \cot \dfrac{C}{2}}
Now using the formula, tan(A+B)=tanA+tanB1tanAtanB\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}, we get-
tanA2+tanB21tanA2tanB2=1tanC2\dfrac{{\tan \dfrac{A}{2} + \tan \dfrac{B}{2}}}{{1 - \tan \dfrac{A}{2}\tan \dfrac{B}{2}}} = \dfrac{1}{{\tan \dfrac{C}{2}}} \left\\{ {\because \cot \dfrac{C}{2} = \dfrac{1}{{\tan \dfrac{C}{2}}}} \right\\}

Therefore, this implies that, tanA2tanB2=1\sum\limits_{}^{} {\tan \dfrac{A}{2}\tan \dfrac{B}{2}} = 1.

Hence, the correct option is (B).

Note- On solving such types of questions, always focus on the conditions given. As mentioned in the solution, using the equation, A+B+C=180A + B + C = {180^ \circ }, and then modifying it further, we have solved the question by proceeding step by step and by using standard results like, tan(A+B)=tanA+tanB1tanAtanB\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}