Solveeit Logo

Question

Question: If \[A + B + C = 180^\circ \], \[\dfrac{{\sin 2A + \sin 2B + \sin 2C}}{{\sin A + \sin B + \sin C}} =...

If A+B+C=180A + B + C = 180^\circ , sin2A+sin2B+sin2CsinA+sinB+sinC=ksinA2sinB2sinC2\dfrac{{\sin 2A + \sin 2B + \sin 2C}}{{\sin A + \sin B + \sin C}} = k\sin \dfrac{A}{2}\sin \dfrac{B}{2}\sin \dfrac{C}{2}, then the value of kk is equal to

Explanation

Solution

Here we are asked to find the value of an unknown variable kk by using the given data. We will find the value of that unknown variable by simplifying the given equation using trigonometric identities. We can also find or simplify the expression on one side of the equation then we can substitute it in that.
Formula: Some formulae that we need to know:
sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta
sin2A+sin2B=2sin(A+B)cos(AB)\sin 2A + \sin 2B = 2\sin \left( {A + B} \right)\cos \left( {A - B} \right)
sin(180θ)=sinθ\sin \left( {180^\circ - \theta } \right) = \sin \theta
sin(90θ)=cosθ\sin \left( {90^\circ - \theta } \right) = \cos \theta
cos(180θ)=cosθ\cos \left( {180^\circ - \theta } \right) = - \cos \theta
cos(AB)cos(A+B)=2sinAsinB\cos \left( {A - B} \right) - \cos \left( {A + B} \right) = 2\sin A\sin B
cos(AB)+cos(A+B)=2cosAcosB\cos \left( {A - B} \right) + \cos \left( {A + B} \right) = 2\cos A\cos B
sinθ=2sin(θ2)cos(θ2)\sin \theta = 2\sin \left( {\dfrac{\theta }{2}} \right)\cos \left( {\dfrac{\theta }{2}} \right)

Complete step by step answer:
It is given that A+B+C=180A + B + C = 180^\circ and sin2A+sin2B+sin2CsinA+sinB+sinC\dfrac{{\sin 2A + \sin 2B + \sin 2C}}{{\sin A + \sin B + \sin C}} we aim to find the value of the unknown variable kk.
We will first consider the left-hand side of the given equation and simplify it.
Using the formula sin2A+sin2B=2sin(A+B)cos(AB)\sin 2A + \sin 2B = 2\sin \left( {A + B} \right)\cos \left( {A - B} \right) with the angles as A,BA,B in the numerator of the left-hand side expression we get
sin2A+sin2B+sin2CsinA+sinB+sinC=2sin(A+B)cos(AB)+sin2CsinA+sinB+sinC\dfrac{{\sin 2A + \sin 2B + \sin 2C}}{{\sin A + \sin B + \sin C}} = \dfrac{{2\sin \left( {A + B} \right)\cos \left( {A - B} \right) + \sin 2C}}{{\sin A + \sin B + \sin C}}
Now using the formula sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta on the third term of the numerator we get
=2sin(A+B)cos(AB)+2sinCcosCsinA+sinB+sinC= \dfrac{{2\sin \left( {A + B} \right)\cos \left( {A - B} \right) + 2\sin C\cos C}}{{\sin A + \sin B + \sin C}}
Using the same formulae, that is sin2A+sin2B=2sin(A+B)cos(AB)\sin 2A + \sin 2B = 2\sin \left( {A + B} \right)\cos \left( {A - B} \right) and sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta in the denominator we get
=2sin(A+B)cos(AB)+2sinCcosC2sin(A+B2)cos(AB2)+2sinC2cosC2= \dfrac{{2\sin \left( {A + B} \right)\cos \left( {A - B} \right) + 2\sin C\cos C}}{{2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) + 2\sin \dfrac{C}{2}\cos \dfrac{C}{2}}}
We are given that A+B+C=180A + B + C = 180^\circ from this we get A+B=180CA + B = 180^\circ - C substituting this to the sine function in the first term of the numerator and denominator we get
=2sin(180C)cos(AB)+2sinCcosC2sin(90C2)cos(AB2)+2sinC2cosC2= \dfrac{{2\sin \left( {180^\circ - C} \right)\cos \left( {A - B} \right) + 2\sin C\cos C}}{{2\sin \left( {90^\circ - \dfrac{C}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) + 2\sin \dfrac{C}{2}\cos \dfrac{C}{2}}}
We know that sin(180θ)=sinθ\sin \left( {180^\circ - \theta } \right) = \sin \theta by using this formula with the angle CC and using another formula sin(90θ)=cosθ\sin \left( {90^\circ - \theta } \right) = \cos \theta with the angle C2\dfrac{C}{2} we get
=2sinC.cos(AB)+2sinCcosC2cosC2.cos(AB2)+2sinC2cosC2= \dfrac{{2\sin C.\cos \left( {A - B} \right) + 2\sin C\cos C}}{{2\cos \dfrac{C}{2}.\cos \left( {\dfrac{{A - B}}{2}} \right) + 2\sin \dfrac{C}{2}\cos \dfrac{C}{2}}}
On simplifying the above, we get
=2sinC[cos(AB)+cosC]2cosC2[cos(AB2)+sinC2]= \dfrac{{2\sin C\left[ {\cos \left( {A - B} \right) + \cos C} \right]}}{{2\cos \dfrac{C}{2}\left[ {\cos \left( {\dfrac{{A - B}}{2}} \right) + \sin \dfrac{C}{2}} \right]}}
Again, using that A+B=180CA + B = 180^\circ - C and sin(90θ)=cosθ\sin \left( {90^\circ - \theta } \right) = \cos \theta with the angle C2\dfrac{C}{2} we get
=2sinC[cos(AB)+cos(180(A+B))]2cosC2[cos(AB2)+sin(90(A+B2))]= \dfrac{{2\sin C\left[ {\cos \left( {A - B} \right) + \cos \left( {180^\circ - \left( {A + B} \right)} \right)} \right]}}{{2\cos \dfrac{C}{2}\left[ {\cos \left( {\dfrac{{A - B}}{2}} \right) + \sin \left( {90^\circ - \left( {\dfrac{{A + B}}{2}} \right)} \right)} \right]}}
On simplifying this we get
=2sinC[cos(AB)cos(A+B)]2cosC2[cos(AB2)+cos(A+B2)]= \dfrac{{2\sin C\left[ {\cos \left( {A - B} \right) - \cos \left( {A + B} \right)} \right]}}{{2\cos \dfrac{C}{2}\left[ {\cos \left( {\dfrac{{A - B}}{2}} \right) + \cos \left( {\dfrac{{A + B}}{2}} \right)} \right]}}
Using the formula cos(AB)cos(A+B)=2sinAsinB\cos \left( {A - B} \right) - \cos \left( {A + B} \right) = 2\sin A\sin B and cos(AB)+cos(A+B)=2cosAcosB\cos \left( {A - B} \right) + \cos \left( {A + B} \right) = 2\cos A\cos B with the angles A2,B2,C2\dfrac{A}{2},\dfrac{B}{2},\dfrac{C}{2} we get
=2sinC.2sinAsinB2cosC2.2cosA2cosB2= \dfrac{{2\sin C.2\sin A\sin B}}{{2\cos \dfrac{C}{2}.2\cos \dfrac{A}{2}\cos \dfrac{B}{2}}}
On further simplification we get
=sinCsinAsinBcosC2cosA2cosB2= \dfrac{{\sin C\sin A\sin B}}{{\cos \dfrac{C}{2}\cos \dfrac{A}{2}\cos \dfrac{B}{2}}}
Now using the formula sinθ=2sin(θ2)cos(θ2)\sin \theta = 2\sin \left( {\dfrac{\theta }{2}} \right)\cos \left( {\dfrac{\theta }{2}} \right) with the angles as A,B,CA,B,C we get
=2sinA2cosA2.2sinB2cosB2.2sinC2cosC2cosA2cosB2cosC2= \dfrac{{2\sin \dfrac{A}{2}\cos \dfrac{A}{2}.2\sin \dfrac{B}{2}\cos \dfrac{B}{2}.2\sin \dfrac{C}{2}\cos \dfrac{C}{2}}}{{\cos \dfrac{A}{2}\cos \dfrac{B}{2}\cos \dfrac{C}{2}}}
On simplifying this we get
=8sinA2sinB2sinC2= 8\sin \dfrac{A}{2}\sin \dfrac{B}{2}\sin \dfrac{C}{2}
Therefore, we have simplified the left-hand side of the given equation. Let us substitute it in that equation.
8sinA2sinB2sinC2=ksinA2sinB2sinC28\sin \dfrac{A}{2}\sin \dfrac{B}{2}\sin \dfrac{C}{2} = k\sin \dfrac{A}{2}\sin \dfrac{B}{2}\sin \dfrac{C}{2}
On simplifying this we get
k=8k = 8
Thus, we got the value of the unknown variable.

Note:
It is given that A+B+C=180A + B + C = 180^\circ which implies A+B+C2=1802\dfrac{{A + B + C}}{2} = \dfrac{{180^\circ }}{2}, simplifying this for the value of C2\dfrac{C}{2} we get C2=90A+B2\dfrac{C}{2} = 90^\circ - \dfrac{{A + B}}{2}also simplifying it for the value of A+B2\dfrac{{A + B}}{2} we get A+B2=90C2\dfrac{{A + B}}{2} = 90^\circ - \dfrac{C}{2}. These derivatives are used in the above calculation.