Solveeit Logo

Question

Question: If a, b, c > 1, then $\Delta = \begin{vmatrix} \log_a (abc) & \log_a b & \log_a c \\ \log_b (abc) & ...

If a, b, c > 1, then Δ=loga(abc)logablogaclogb(abc)1logbclogc(abc)logcb1\Delta = \begin{vmatrix} \log_a (abc) & \log_a b & \log_a c \\ \log_b (abc) & 1 & \log_b c \\ \log_c (abc) & \log_c b & 1 \end{vmatrix} equals to ____.

A

0

B

logab+logbc+logca\log_a b + \log_b c + \log_c a

C

logabc(a+b+c)\log_{abc} (a + b + c)

D

none of these

Answer

0

Explanation

Solution

Let the given determinant be Δ\Delta.

Δ=loga(abc)logablogaclogb(abc)1logbclogc(abc)logcb1\Delta = \begin{vmatrix} \log_a (abc) & \log_a b & \log_a c \\ \log_b (abc) & 1 & \log_b c \\ \log_c (abc) & \log_c b & 1 \end{vmatrix}

We use the property of logarithms logx(yz)=logxy+logxz\log_x (yz) = \log_x y + \log_x z and logxx=1\log_x x = 1. The elements in the first column can be simplified:

loga(abc)=logaa+logab+logac=1+logab+logac\log_a (abc) = \log_a a + \log_a b + \log_a c = 1 + \log_a b + \log_a c

logb(abc)=logba+logbb+logbc=logba+1+logbc\log_b (abc) = \log_b a + \log_b b + \log_b c = \log_b a + 1 + \log_b c

logc(abc)=logca+logcb+logcc=logca+logcb+1\log_c (abc) = \log_c a + \log_c b + \log_c c = \log_c a + \log_c b + 1

Substitute these into the determinant:

Δ=1+logab+logaclogablogaclogba+1+logbc1logbclogca+logcb+1logcb1\Delta = \begin{vmatrix} 1 + \log_a b + \log_a c & \log_a b & \log_a c \\ \log_b a + 1 + \log_b c & 1 & \log_b c \\ \log_c a + \log_c b + 1 & \log_c b & 1 \end{vmatrix}

Let C1,C2,C3C_1, C_2, C_3 denote the first, second, and third columns, respectively. Apply the column operation C1C1C2C3C_1 \to C_1 - C_2 - C_3. The new elements in the first column are:

Row 1: (1+logab+logac)logablogac=1(1 + \log_a b + \log_a c) - \log_a b - \log_a c = 1

Row 2: (logba+1+logbc)1logbc=logba(\log_b a + 1 + \log_b c) - 1 - \log_b c = \log_b a

Row 3: (logca+logcb+1)logcb1=logca(\log_c a + \log_c b + 1) - \log_c b - 1 = \log_c a

The determinant becomes:

Δ=1logablogaclogba1logbclogcalogcb1\Delta = \begin{vmatrix} 1 & \log_a b & \log_a c \\ \log_b a & 1 & \log_b c \\ \log_c a & \log_c b & 1 \end{vmatrix}

Now, we can use the change of base formula for logarithms, logxy=lnylnx\log_x y = \frac{\ln y}{\ln x}. Let lna=α\ln a = \alpha, lnb=β\ln b = \beta, lnc=γ\ln c = \gamma. Since a,b,c>1a, b, c > 1, α,β,γ>0\alpha, \beta, \gamma > 0.

logab=lnblna=βα\log_a b = \frac{\ln b}{\ln a} = \frac{\beta}{\alpha}

logac=lnclna=γα\log_a c = \frac{\ln c}{\ln a} = \frac{\gamma}{\alpha}

logba=lnalnb=αβ\log_b a = \frac{\ln a}{\ln b} = \frac{\alpha}{\beta}

logbc=lnclnb=γβ\log_b c = \frac{\ln c}{\ln b} = \frac{\gamma}{\beta}

logca=lnalnc=αγ\log_c a = \frac{\ln a}{\ln c} = \frac{\alpha}{\gamma}

logcb=lnblnc=βγ\log_c b = \frac{\ln b}{\ln c} = \frac{\beta}{\gamma}

Substitute these into the determinant:

Δ=1β/αγ/αα/β1γ/βα/γβ/γ1\Delta = \begin{vmatrix} 1 & \beta/\alpha & \gamma/\alpha \\ \alpha/\beta & 1 & \gamma/\beta \\ \alpha/\gamma & \beta/\gamma & 1 \end{vmatrix}

Let R1,R2,R3R_1, R_2, R_3 denote the first, second, and third rows, respectively. Apply the row operations R2R2αβR1R_2 \to R_2 - \frac{\alpha}{\beta} R_1 and R3R3αγR1R_3 \to R_3 - \frac{\alpha}{\gamma} R_1.

For R2R2αβR1R_2 \to R_2 - \frac{\alpha}{\beta} R_1:

Row 2, element 1: αβαβ×1=0\frac{\alpha}{\beta} - \frac{\alpha}{\beta} \times 1 = 0

Row 2, element 2: 1αβ×βα=11=01 - \frac{\alpha}{\beta} \times \frac{\beta}{\alpha} = 1 - 1 = 0

Row 2, element 3: γβαβ×γα=γβγβ=0\frac{\gamma}{\beta} - \frac{\alpha}{\beta} \times \frac{\gamma}{\alpha} = \frac{\gamma}{\beta} - \frac{\gamma}{\beta} = 0

The new second row is (0,0,0)(0, 0, 0).

For R3R3αγR1R_3 \to R_3 - \frac{\alpha}{\gamma} R_1:

Row 3, element 1: αγαγ×1=0\frac{\alpha}{\gamma} - \frac{\alpha}{\gamma} \times 1 = 0

Row 3, element 2: βγαγ×βα=βγβγ=0\frac{\beta}{\gamma} - \frac{\alpha}{\gamma} \times \frac{\beta}{\alpha} = \frac{\beta}{\gamma} - \frac{\beta}{\gamma} = 0

Row 3, element 3: 1αγ×γα=11=01 - \frac{\alpha}{\gamma} \times \frac{\gamma}{\alpha} = 1 - 1 = 0

The new third row is (0,0,0)(0, 0, 0).

The determinant becomes:

Δ=1β/αγ/α000000\Delta = \begin{vmatrix} 1 & \beta/\alpha & \gamma/\alpha \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix}

A determinant with a row of all zeros is equal to zero.

Thus, Δ=0\Delta = 0.