Question
Question: If a + b + c \> 0 and ∆ = \(\left| \begin{matrix} a & b & c \\ b & c & a \\ c & a & b \end{matrix} \...
If a + b + c > 0 and ∆ = abcbcacab , then
A
∆< 0
B
∆≤ 0
C
∆> 0
D
∆ = 0
Answer
∆≤ 0
Explanation
Solution
∆ = – (a + b + c) (a2 + b2 + c2 – ab – bc – ac)
we know 2a2+b2≥ ab (by AM ≥ GM)
2b2+c2 ≥ bc ⇒ 2a2+c2 ≥ ac ⇒ a2 + b2 + c2 ≥ ab + bc + ac
a2 + b2 + c2 – ab – bc – ac ≥ 0
Now, ∆ = – ( +) ( + ) ∆ ≤ 0