Solveeit Logo

Question

Question: If a + b + c \> 0 and ∆ = \(\left| \begin{matrix} a & b & c \\ b & c & a \\ c & a & b \end{matrix} \...

If a + b + c > 0 and ∆ = abcbcacab\left| \begin{matrix} a & b & c \\ b & c & a \\ c & a & b \end{matrix} \right| , then

A

∆< 0

B

∆≤ 0

C

∆> 0

D

∆ = 0

Answer

∆≤ 0

Explanation

Solution

∆ = – (a + b + c) (a2 + b2 + c2 – ab – bc – ac)

we know a2+b22\frac{a^{2} + b^{2}}{2}≥ ab (by AM ≥ GM)

b2+c22\frac{b^{2} + c^{2}}{2} ≥ bc ⇒ a2+c22\frac{a^{2} + c^{2}}{2} ≥ ac ⇒ a2 + b2 + c2 ≥ ab + bc + ac

a2 + b2 + c2 – ab – bc – ac ≥ 0

Now, ∆ = – ( +) ( + ) ∆ ≤ 0