Solveeit Logo

Question

Mathematics Question on Sequence and series

If a,b,c>0a, b, c > 0 and if abc=1abc = 1, then the value of a+b+c+ab+bc+caa + b + c + ab + bc + ca lies in the interval

A

(,6](-\infty,-6]

B

(- 6 , 0)

C

(0, 6 )

D

[6,,)[6,\infty,)

Answer

[6,,)[6,\infty,)

Explanation

Solution

Since A.M.G.M.A.M.\ge G.M. a+b+c33abc\Rightarrow \frac{a+b+c}{3} 3\sqrt{abc} a+b+c3(1)13\Rightarrow \frac{a+b+c}{3} \ge\left(1\right)^{\frac{1}{3}} (abc=1) \quad\left(\because abc=1\right) a+b+c3...(1) \Rightarrow a+b+c \ge 3\quad...\left(1\right) Also G.M.H.M.G.M. \ge H.M. 31a+1b+1c\Rightarrow \frac{3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}} (1)133abcab+bc+ca\Rightarrow\left(1\right)^{\frac{1}{3}}\ge \frac{3abc}{ab+bc+ca} ab+bc+ca3(1) \Rightarrow ab+bc+ca \ge3\left(1\right) ab+bc+ca3\Rightarrow ab+bc+ca \ge3 ...(2)\qquad\quad...\left(2\right) Adding (1)\left(1\right) and (2)\left(2\right), we get a+b+c+ab+bc+ca6a+b+c+ab+bc+ca\ge6 a+b+c+ab+bc+ca\therefore a+b+c+ab+bc+ca lies in [6,)[6, \infty)