Solveeit Logo

Question

Question: If a, b be roots of x<sup>2</sup> – 3x + a = 0 and g, d be roots of x<sup>2</sup> – 12x + b = 0 and ...

If a, b be roots of x2 – 3x + a = 0 and g, d be roots of x2 – 12x + b = 0 and a, b, g, d, (in order) form an increasing G.P. Then

A

a = 3, b = 12

B

a = 12, b = 3

C

a = 2, b = 32

D

a = 4, b = 16

Answer

a = 2, b = 32

Explanation

Solution

since a, b be roots of x2 – 3x + a = 0

\ a + b = 3, ab = a

since g, d be roots of x2 – 12x + b = 0

\ g + d = 12, gd = b

Q αβ\frac { \alpha } { \beta } = γδ\frac { \gamma } { \delta }

Ž αβ(α+β)2\frac { \alpha \beta } { ( \alpha + \beta ) ^ { 2 } }= γδ(γ+δ)2\frac { \gamma \delta } { ( \gamma + \delta ) ^ { 2 } }

a9\frac { \mathrm { a } } { 9 } = b144\frac { \mathrm { b } } { 144 }

16a = b

Let r be the common ratio of a, b, g, d

then b = ar, g = ar2 and d = ar3

Q a and b be roots of equation x2 – 3x + a = 0

\ a + b = a(1 + r) = 3 .........(i)

ab = a(ar) = a ..........(ii)

Q g and d be roots of equation x2 – 12x + b = 0

\ g + d = ar2(1 + r) = 12 ........(iii)

gd = (ar2) (ar3) = b Ž a2 r5 = b ........(iv)

from (iii) ø (i) r2 = 4 Ž r = 2

then from (i), a = 1 Ž a = 2

b = 25 =32