Solveeit Logo

Question

Mathematics Question on Quadratic Equations

If α, β are the roots of the equation
x2(5+3log355log53)+3(3(log35)135(log53)231)=0x^2-(5+3^{\sqrt{log_35}}-5^{\sqrt{log_53}})+3(3^{(log_35)^{\frac{1}{3}}}-5^{(log_53)^{\frac{2}{3}}}-1) = 0
then the equation, whose roots are α + 1/β and β + 1/α , is

A

3x2 – 20x – 12 = 0

B

3x2 – 10x – 4 = 0

C

3x2 – 10x + 2 = 0

D

3x2 – 20x + 16 = 0

Answer

3x2 – 10x – 4 = 0

Explanation

Solution

The correct answer is (B) : 3x2 – 10x – 4 = 0
3log355log53=3log35(3log35)log53=03^{\sqrt{\log_{3}5}} - 5^{\sqrt{\log_{5}3}} = 3^{\sqrt{\log_{3}5}} - (3\log_{3}5)^{\sqrt{\log_{5}3}}= 0
3(log35)135(log53)23=5(log53)235(log53)23=03^{(\log_{3}5)^{\frac{1}{3}}} - 5^{(\log_{5}3)^{\frac{2}{3}}} = 5^{(\log_{5}3)^{\frac{2}{3}}} - 5^{(\log_{5}3)^{\frac{2}{3}}} = 0
Note: In the given equation ‘ x ’ is missing.
So α, β are the roots of x2 – 5x + 3(-1) = 0
α+β+1α+1β=(α+β)+α+βαβα + β + \frac{1}{α} + \frac{1}{β} = (α+β) + \frac{α+β}{αβ}
=553= 5-\frac{5}{3}
=103= \frac{10}{3}
(α+1β)(β+1α)=2+αβ+1αβ(α+\frac{1}{β})(β+\frac{1}{α}) = 2+αβ+\frac{1}{αβ}
=2313=43= 2-3-\frac{1}{3}=\frac{-4}{3}
So Equation must be option (B).