Solveeit Logo

Question

Question: If a, b are the roots of the equation 8x<sup>2</sup> –3x + 27 = 0, then the value of \(\left( \frac{...

If a, b are the roots of the equation 8x2 –3x + 27 = 0, then the value of (α2β)1/3\left( \frac{\alpha^{2}}{\beta} \right)^{1/3}+ (β2α)1/3\left( \frac{\beta^{2}}{\alpha} \right)^{1/3}is-

A

1/3

B

ј

C

7/2

D

4

Answer

ј

Explanation

Solution

If a, b are roots of 8x2 –3x + 27 = 0

a + b = 38\frac{3}{8}, ab = 278\frac{27}{8}

(α2β)1/3\left( \frac{\alpha^{2}}{\beta} \right)^{1/3}+ (β2α)1/3\left( \frac{\beta^{2}}{\alpha} \right)^{1/3}= (α3)1/3+(β3)1/3(αβ)1/3\frac{(\alpha^{3})^{1/3} + (\beta^{3})^{1/3}}{(\alpha\beta)^{1/3}}= α+β(αβ)1/3\frac{\alpha + \beta}{(\alpha\beta)^{1/3}}

= 3/8(278)1/3\frac{3/8}{\left( \frac{27}{8} \right)^{1/3}}= 14\frac{1}{4}