Solveeit Logo

Question

Question: If a, b are the eccentric angles of the extremities of a focal chord of the ellipse x<sup>2</sup>/16...

If a, b are the eccentric angles of the extremities of a focal chord of the ellipse x2/16 + y2/9 = 1, then tan (a/2) tan (b/2) =

A

7+474\frac{\sqrt{7} + 4}{\sqrt{7} - 4}

B

923- \frac{9}{23}

C

545+4\frac{\sqrt{5} - 4}{\sqrt{5} + 4}

D

87239\frac{8\sqrt{7} - 23}{9}

Answer

87239\frac{8\sqrt{7} - 23}{9}

Explanation

Solution

The equation of the ellipse is of the form
x2/a2 + y2/b2 = 1 where a2 = 16, b2 = 9

\ the eccentricity e = 1916\sqrt{1 - \frac{9}{16}}=74\frac{\sqrt{7}}{4}.

Let P(4 cos a, 3 sin a) and Q (4 cos b, 3 sin b) be a focal chord of the ellipse passing through the focus at (7\sqrt{7}, 0).

Then 3sinβ4cosβ7\frac{3\sin\beta}{4\cos\beta - \sqrt{7}}=3sinα4cosα7\frac{3\sin\alpha}{4\cos\alpha - \sqrt{7}}

Ž sin(αβ)sinαsinβ\frac{\sin(\alpha - \beta)}{\sin\alpha - \sin\beta}=74\frac{\sqrt{7}}{4}

Ž cos[(αβ)/2]cos[(α+β)/2]\frac{\cos\lbrack(\alpha - \beta)/2\rbrack}{\cos\lbrack(\alpha + \beta)/2\rbrack} = 74\frac{\sqrt{7}}{4}

Ž tan (α2)\left( \frac{\alpha}{2} \right)tan (β2)\left( \frac{\beta}{2} \right) = 747+4\frac{\sqrt{7} - 4}{\sqrt{7} + 4}= 23879\frac{23 - 8\sqrt{7}}{- 9}.