Question
Question: If a, b are the eccentric angles of the extremities of a focal chord of an ellipse, then the eccentr...
If a, b are the eccentric angles of the extremities of a focal chord of an ellipse, then the eccentricity of the ellipse is –
A
cos(α+β)cosα+cosβ
B
sin(α–β)sinα–sinβ
C
cos(α–β)cosα–cosβ
D
sin(α+β)sinα+sinβ
Answer
sin(α+β)sinα+sinβ
Explanation
Solution
(a cos a, b sin a), (a cos b, b sin b), (ae, 0) are collinear.
a(cosβ–cosα)b(sinβ–sinα)=acosα–aebsinα–0
\ (cosa – e) (sinb – sina) = sin a(cosb – cosa)
\ e =sinβ–sinαcosα(sinβ–sinα)–sinα(cosβ–cosα)
= sinα–sinβsin(α–β)= sin(α+β)sinα+sinβ