Solveeit Logo

Question

Question: If a, b are the eccentric angles of the extremities of a focal chord of an ellipse, then the eccentr...

If a, b are the eccentric angles of the extremities of a focal chord of an ellipse, then the eccentricity of the ellipse is –

A

cosα+cosβcos(α+β)\frac{\cos\alpha + \cos\beta}{\cos(\alpha + \beta)}

B

sinαsinβsin(αβ)\frac{\sin\alpha –\sin\beta}{\sin(\alpha –\beta)}

C

cosαcosβcos(αβ)\frac{\cos\alpha –\cos\beta}{\cos(\alpha –\beta)}

D

sinα+sinβsin(α+β)\frac{\sin\alpha + \sin\beta}{\sin(\alpha + \beta)}

Answer

sinα+sinβsin(α+β)\frac{\sin\alpha + \sin\beta}{\sin(\alpha + \beta)}

Explanation

Solution

(a cos a, b sin a), (a cos b, b sin b), (ae, 0) are collinear.

b(sinβsinα)a(cosβcosα)=bsinα0acosαae\frac{b(\sin\beta –\sin\alpha)}{a(\cos\beta –\cos\alpha)} = \frac{b\sin\alpha –0}{a\cos\alpha –ae}

\ (cosa – e) (sinb – sina) = sin a(cosb – cosa)

\ e =cosα(sinβsinα)sinα(cosβcosα)sinβsinα\frac{\cos\alpha(\sin\beta –\sin\alpha)–\sin\alpha(\cos\beta –\cos\alpha)}{\sin\beta –\sin\alpha}

= sin(αβ)sinαsinβ\frac{\sin(\alpha –\beta)}{\sin\alpha –\sin\beta}= sinα+sinβsin(α+β)\frac{\sin\alpha + \sin\beta}{\sin(\alpha + \beta)}