Solveeit Logo

Question

Question: If \(a,b\) are positive quantities and if \[{a_1} = \dfrac{{a + b}}{2}\] , \[{b_1} = \sqrt {{a_1}{...

If a,ba,b are positive quantities and if
a1=a+b2{a_1} = \dfrac{{a + b}}{2} , b1=a1b1{b_1} = \sqrt {{a_1}{b_1}}
a2=a1+b12{a_2} = \dfrac{{a{}_1 + {b_1}}}{2} , b2=a2b2{b_2} = \sqrt {{a_2}{b_2}}
A) b=a2+b2cos1(a/b){b_\infty } = \dfrac{{\sqrt {{a^2} + {b^2}} }}{{{{\cos }^{ - 1}}(a/b)}}
B) b=a2b2cos1(a/b){b_\infty } = \dfrac{{\sqrt {{a^2} - {b^2}} }}{{{{\cos }^{ - 1}}(a/b)}}
C) b=(a2b2)cos1(a/b){b_\infty } = \dfrac{{\sqrt {({a^2} - {b^2})} }}{{{{\cos }^{ - 1}}(a/b)}}
D) None of these

Explanation

Solution

To solve this question firstly we consider a particular value of a'a' ‘a’ in the form of bbandcosθ\cos \theta . With the help of this value we can find the value of a1{a_1} as we have givena1=a+b2{a_1} = \dfrac{{a + b}}{2}. Once value of b1{b_1}. We can calculate the value of b1{b_1}in the form of cosθ\cos \theta function. With the help of the value of a1{a_1} and b1{b_1} we can calculate the value of b2{b_2} and with the help of a2{a_2} we can find b3{b_3} and so on. In the last we get a series of cos\cos functions. The applied unit on this sequence will get the required result.

Complete step by step solutions:
We have given that a,ba,b are positive quantities and aa is smaller thanbb. Also we have
a1=a+b2{a_1} = \dfrac{{a + b}}{2} , b1=a1b1{b_1} = \sqrt {{a_1}{b_1}} , a2=a1+b12{a_2} = \dfrac{{a{}_1 + {b_1}}}{2} , b2=a2b2{b_2} = \sqrt {{a_2}{b_2}} and so on…
Let us consider that a=bcosθa = b\cos \theta
We have given that a1=a+b2{a_1} = \dfrac{{a + b}}{2}
So a1=bcosθ+b2{a_1} = \dfrac{{b\cos \theta + b}}{2}
b2(cosθ+1)\Rightarrow \dfrac{b}{2}\left( {\cos \theta + 1} \right)
a1=b2(1+cosθ)\Rightarrow {a_1} = \dfrac{b}{2}(1 + \cos \theta )
We know that 1 + \cos \theta = 2{\cos ^2}{\raise0.5ex\hbox{\scriptstyle 0} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{\scriptstyle 2}}
Therefore a1=b2(2cos2θ2)=bcos2θ2{a_1} = \dfrac{b}{2}\left( {2{{\cos }^2}\dfrac{\theta }{2}} \right) = b{\cos ^2}\dfrac{\theta }{2}
a1=bcos2θ2\Rightarrow {a_1} = b{\cos ^2}\dfrac{\theta }{2}
We have given that b1=a1b{b_1} = \sqrt {{a_1}b}
Putting value of a1{a_1} , we get
b1=b×bcos2θ2=b2cos2\raise0.5exθ/\lower0.25ex2=bcos\raise0.5exθ/\lower0.25ex2{b_1} = \sqrt {b \times b{{\cos }^2}\dfrac{\theta }{2}} = \sqrt {{b^2}{{\cos }^2}{\raise0.5ex\hbox{$\scriptstyle \theta $} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}} = b\cos {\raise0.5ex\hbox{$\scriptstyle \theta $} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}
So value of b1=bcosθ2{b_1} = b\cos \dfrac{\theta }{2}
Also we have given that a2=a1+b12{a_2} = \dfrac{{{a_1} + {b_1}}}{2}putting the value of a1{a_1} and a2{a_2} in
a2=bcos2θ2+bcosθ22=bcosθ2(cosθ2+1)2{a_2} = \dfrac{{b{{\cos }^2}\dfrac{\theta }{2} + b\cos \dfrac{\theta }{2}}}{2} = \dfrac{{b\cos \dfrac{\theta }{2}\left( {\cos \dfrac{\theta }{2} + 1} \right)}}{2}
bcosθ2+bcos2θ22=bcosθ2cos2θ4\Rightarrow \dfrac{{b\cos \dfrac{\theta }{2} + b{{\cos }^2}\dfrac{\theta }{2}}}{2} = b\cos \dfrac{\theta }{2}{\cos ^2}\dfrac{\theta }{4}
b2=a2b1{b_2} = \sqrt {{a_2}{b_1}}
b2cos2θ2cos2θ4=bcosθ2cosθ4\Rightarrow \sqrt {{b^2}{{\cos }^2}\dfrac{\theta }{2}{{\cos }^2}\dfrac{\theta }{4}} = b\cos \dfrac{\theta }{2}\cos \dfrac{\theta }{4}
b2=bcosθ2cosθ4\Rightarrow {b_2} = b\cos \dfrac{\theta }{2}\cos \dfrac{\theta }{4}
So from the above sequence of b2{b_2} we can write the value of b3{b_3}
b3=bcosθ2.cosθ4.cosθ8{b_3} = b\cos \dfrac{\theta }{2}.\cos \dfrac{\theta }{4}.\cos \dfrac{\theta }{8}
So, bn=bcosθ2cosθ4cosθ8cosθ16,........cosθ2n{b_n} = b\cos \dfrac{\theta }{2}\cos \dfrac{\theta }{4}\cos \dfrac{\theta }{8}\cos \dfrac{\theta }{{16}},........\cos \dfrac{\theta }{{{2^n}}}
Now b=limxbn{b_\infty } = \mathop {\lim }\limits_{x \to \infty } bn
Therefore b=limx{b_\infty } = \mathop {\lim }\limits_{x \to \infty } bcosθ2cosθ4cosθ8.......cosθ2nb\cos \dfrac{\theta }{2}\cos \dfrac{\theta }{4}\cos \dfrac{\theta }{8}.......\cos \dfrac{\theta }{{{2^n}}}
Now we have sinθ=2sinθ2cosθ2\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}
Therefore cosθ2=sinθ2sinθ2\cos \dfrac{\theta }{2} = \dfrac{{\sin \theta }}{{2\sin \dfrac{\theta }{2}}}
We get b=limx{b_\infty } = \mathop {\lim }\limits_{x \to \infty } bsinθ2sinθ2×sinθ22sinθ4×sinθ42sinθ8b\dfrac{{\sin \theta }}{{2\sin \dfrac{\theta }{2}}} \times \dfrac{{\sin \dfrac{\theta }{2}}}{{2\sin \dfrac{\theta }{4}}} \times \dfrac{{\sin \dfrac{\theta }{4}}}{{2\sin \dfrac{\theta }{8}}}
b=limxbsinθ2nsinθ2n{b_\infty } = \mathop {\lim }\limits_{x \to \infty } \dfrac{{b\sin \theta }}{{{2^n}\sin \dfrac{\theta }{{{2^n}}}}}
Now b=limx{b_\infty } = \mathop {\lim }\limits_{x \to \infty } bθ2n×sinθθsinθ2nb\dfrac{\theta }{{{2^n}}} \times \dfrac{{\sin \theta }}{{\theta \sin \dfrac{\theta }{{{2^n}}}}}
\Rightarrow \mathop {\lim }\limits_{x \to \infty } \dfrac{{b\sin \theta }}{\theta }.\left( {\dfrac{{{{{\raise0.5ex\hbox{\scriptstyle \theta } \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{\scriptstyle 2}}}^n}}}{{\sin {{{\raise0.5ex\hbox{\scriptstyle \theta } \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{\scriptstyle 2}}}^n}}}} \right)
bsinθθ.limx(θ2nsin\raise0.5exθ/\lower0.25ex2n)\Rightarrow b\dfrac{{\sin \theta }}{\theta }.\mathop {\lim }\limits_{x \to \infty } \left( {\dfrac{{\dfrac{\theta }{{{2^n}}}}}{{\sin {{{\raise0.5ex\hbox{$\scriptstyle \theta $} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}^n}}}} \right)
bsinθθ×1\Rightarrow \dfrac{{b\sin \theta }}{\theta } \times 1
b=bsinθθ\Rightarrow {b_\infty } = b\dfrac{{\sin \theta }}{\theta }
Now a=bcosθa = b\cos \theta
cosθ=ab\Rightarrow \cos \theta = \dfrac{a}{b}
sinθ=1cos2θ=1a2b2\sin \theta = \sqrt {1 - {{\cos }^2}\theta } = \sqrt {1 - \dfrac{{{a^2}}}{{{b^2}}}}
Also cosθ=θb\cos \theta = \dfrac{\theta }{b}
θ=cos1ab\theta = {\cos ^{ - 1}}\dfrac{a}{b}
So, b=b1a2b2cos1ab=bb2a2bcos1ab{b_\infty } = \dfrac{{b\sqrt {1 - \dfrac{{{a^2}}}{{{b^2}}}} }}{{{{\cos }^{ - 1}}\dfrac{a}{b}}} = \dfrac{{b\sqrt {\dfrac{{{b^2} - {a^2}}}{b}} }}{{{{\cos }^{ - 1}}\dfrac{a}{b}}}
b=b2a2cos1ab\Rightarrow {b_\infty } = \dfrac{{\sqrt {{b^2} - {a^2}} }}{{{{\cos }^{ - 1}}\dfrac{a}{b}}}
This is the requested result.

Therefore option (B)(B) is the correct answer.

Note:
Trigonometry is the branch of mathematics concerned with specific functions of angles and this application to calculations. There are six trigonometric functions of angles commonly used in trigonometry. Their names are sine(sin),cosine(cos),\sin e(\sin ),\cos ine(\cos ), tangent(tan),cotanget(cot),\tan gent(\tan ),\cot anget(\cot ), cotasecant(sec),cosecant(cosec)\cot a\sec ant(\sec ),\cos ecant(\cos ec).
These trigonometric functions are related to the angle and the ratio of the sides of the triangle.