Solveeit Logo

Question

Question: If **a, b** and **c** be three non-zero vectors, no two of which are collinear. If the vector \(\mat...

If a, b and c be three non-zero vectors, no two of which are collinear. If the vector a+2b\mathbf{a} + 2\mathbf{b} is collinear with c and b+3c\mathbf{b} + 3\mathbf{c} is collinear with a, then (λ\lambda being some non-zero scalar) a+2b+6c\mathbf{a} + 2\mathbf{b} + 6\mathbf{c} is equal to

A

λa\lambda\mathbf{a}

B

λb\lambda\mathbf{b}

C

λc\lambda\mathbf{c}

D

0

Answer

0

Explanation

Solution

Let a+2b=xc\mathbf{a} + 2\mathbf{b} = x\mathbf{c} and b+3c=ya,\mathbf{b} + 3\mathbf{c} = y\mathbf{a}, then a+2b+6c=(x+6)c\mathbf{a} + 2\mathbf{b} + 6\mathbf{c} = (x + 6)\mathbf{c}and a+2b+6c=(1+2y)a\mathbf{a} + 2\mathbf{b} + 6\mathbf{c} = (1 + 2y)\mathbf{a}

So, (x+6)c=(1+2y)a(x + 6)\mathbf{c} = (1 + 2y)\mathbf{a}

Since a\mathbf{a} and c\mathbf{c} are non-zero and non-collinear, we have x+6=0x + 6 = 0 and 1+2y=01 + 2y = 0 i.e., x=6x = - 6 and y=12.y = - \frac{1}{2}. In either case, we have a+2b+6c=0\mathbf{a} + 2\mathbf{b} + 6\mathbf{c} = \mathbf{0}.