Solveeit Logo

Question

Mathematics Question on Product of Two Vectors

If a,ba , \,b and cc are three non-zero vectors such that each one of them being perpendicular to the sum of the other two vectors, then the value of a+b+c2| a + b + c |^{2} is

A

a2+b2+c2\left|{a}\right|^{2} +\left|{b}\right|^{2} +\left|{c}\right|^{2}

B

a+b+c\left|{a}\right| +\left|{b}\right| +\left|{c}\right|

C

2(a2+b2+c2)2\left(\left|{a}\right|^{2}+\left|{b}\right|^{2}+\left|{c}\right|^{2}\right)

D

12(a2+b2+c2)\frac{1}{2}\left(\left|{a}\right|^{2}+\left|{b}\right|^{2}+\left|{c}\right|^{2}\right)

Answer

a2+b2+c2\left|{a}\right|^{2} +\left|{b}\right|^{2} +\left|{c}\right|^{2}

Explanation

Solution

According to the given condition, each vector is perpendicular to the sum of two vectors.
a(b+c)=0,\therefore a \cdot( b + c )=0,
b(a+c)=0b \cdot( a + c )=0
and c(a+b)=0 c \cdot( a + b )=0,
ab+ac=0,ba+bc=0\Rightarrow a \cdot b + a \cdot c =0, b \cdot a + b \cdot c =0
and ca+cb=0 c \cdot a + c \cdot b =0
2(ab+bc+ca)=0...(i)\Rightarrow 2( a \cdot b + b \cdot c + c \cdot a )=0\,\,\,...(i)
Now,a+b+c2=a2+b2+c2+2(ab+bc+ca)Now ,| a + b + c |^{2}=| a |^{2}+| b |^{2}+| c |^{2}+2( a \cdot b + b \cdot c + c \cdot a )
=a2+b2+c2+2(0)[=| a |^{2}+| b |^{2}+| c |^{2}+2(0) \,\,\,[ From E (i)]
=a2+b2+c2=| a |^{2}+| b |^{2}+| c |^{2}