Solveeit Logo

Question

Mathematics Question on Vector Algebra

If a,ba , b and cc are three non-coplanar vectors and p,qp , q and rr are vectors defined by p=b×c[abc],q=c×a[abc]p =\frac{ b \times c }{[ a b c ]}, q =\frac{ c \times a }{[ a b c ]} and r=a×b[abc]r =\frac{ a \times b }{[ a b c ]}, then the value of (a+b)p+(b+c)q+(c+a)r( a + b ) \cdot p +( b + c ) \cdot q +( c + a ) \cdot r is equal to

A

0

B

1

C

2

D

3

Answer

3

Explanation

Solution

Let T1=(a+b)pT_{1} =\left( a + b\right) � p
=ap+bp=a �p+b�p
ab×c[abc]+b(b×c)[abc]a\cdot\frac{b\times c}{\left[a\,b\,c\right]}+\frac{b\cdot\left(b\times c\right)}{\left[a\,b\,c\right]}
[abc][abc]+[bbc][abc]=1+0=1\frac{\left[a\,b\,c\right]}{\left[a\,b\,c\right]}+\frac{\left[b\,b\,c\right]}{\left[a\,b\,c\right]} = 1 + 0 = 1
Similarly, T2=(b+c).q=1T_{2} = \left(b + c\right). q = 1
and T3=(c+a)r=1T_{3} =\left(c+a\right) �r =1
T1+T2+T3=3\therefore T_{1}+T _{2} +T _{3} =3