Solveeit Logo

Question

Question: If A, B and C are three events such that \[P\left( A \right){\text{ }} = {\text{ }}P\left( B \right)...

If A, B and C are three events such that P(A) = P(B) = P(C) = 14 ,P(AB) = 0P\left( A \right){\text{ }} = {\text{ }}P\left( B \right){\text{ }} = {\text{ }}P\left( C \right){\text{ }} = {\text{ }}\dfrac{1}{4}{\text{ }},P\left( {AB} \right){\text{ }} = {\text{ }}0, P(AC) = 18P\left( {AC} \right){\text{ }} = {\text{ }}\dfrac{1}{8}, then  P( A + B ) =\;P\left( {{\text{ }}A{\text{ }} + {\text{ }}B{\text{ }}} \right){\text{ }} =
\left( 1 \right)$$$$0.125
\left( 2 \right)$$$$0.25
\left( 3 \right)$$$$0.375
\left( 4 \right)$$$$0.5

Explanation

Solution

We have to find theP( A + B )P\left( {{\text{ }}A{\text{ }} + {\text{ }}B{\text{ }}} \right). We solve the question using condition probability and using the concept of meaning of some formulas . We also use the knowledge of the identity of probability of union of two events . From the given data we can compute the values of the probability of P ( A + B ) .P{\text{ }}\left( {{\text{ }}A{\text{ }} + {\text{ }}B{\text{ }}} \right){\text{ }}.

Complete step-by-step solution:
The intersection of terms are said to the common elements shared by the two events . The intersection is also stated as “ and “ . whereas the union of the terms is said to be the sum total of the two events and subtracting the common portion or the intersection of the two events . The union is also stated as “ or “ .
Given :
P(A) = P(B) = P(C) = 14 , P(AB) = 0 , P(AC) = 18P\left( A \right){\text{ }} = {\text{ }}P\left( B \right){\text{ }} = {\text{ }}P\left( C \right){\text{ }} = {\text{ }}\dfrac{1}{4}{\text{ }},{\text{ }}P\left( {AB} \right){\text{ }} = {\text{ }}0{\text{ }},{\text{ }}P\left( {AC} \right){\text{ }} = {\text{ }}\dfrac{1}{8}
Recognising,
P(AB) = P( A  B )P\left( {AB} \right){\text{ }} = {\text{ }}P\left( {{\text{ }}A{\text{ }}|{\text{ }}B{\text{ }}} \right)
And we know that
P( A  B ) = P ( A B )  P ( B )P\left( {{\text{ }}A{\text{ }}|{\text{ }}B{\text{ }}} \right){\text{ }} = {\text{ }}\dfrac{{P{\text{ }}\left( {{\text{ }}A{\text{ }} \cap B{\text{ }}} \right){\text{ }}}}{{{\text{ }}P{\text{ }}\left( {{\text{ }}B{\text{ }}} \right)}}
Now ,
P(AB) =P( A  B ) P( B )P\left( {AB} \right){\text{ }} = \dfrac{{P\left( {{\text{ }}A{\text{ }} \cap {\text{ }}B{\text{ }}} \right)}}{{{\text{ }}P\left( {{\text{ }}B{\text{ }}} \right)}}
As given , P(AB) = 0P\left( {AB} \right){\text{ }} = {\text{ }}0
So ,
P( A  B )P( B ) = 0  \dfrac{{P\left( {{\text{ }}A{\text{ }} \cap {\text{ }}B{\text{ }}} \right)}}{{P\left( {{\text{ }}B{\text{ }}} \right)}}{\text{ }} = {\text{ }}0\;
From here we can say that
P( A  B ) = 0P\left( {{\text{ }}A{\text{ }} \cap {\text{ }}B{\text{ }}} \right){\text{ }} = {\text{ }}0
We know that the probability of sum of two events is given by the formula :
P( A  B ) = P(A) + P(B)  P( A  B )P\left( {{\text{ }}A{\text{ }} \cup {\text{ }}B{\text{ }}} \right){\text{ }} = {\text{ }}P\left( A \right){\text{ }} + {\text{ }}P\left( B \right){\text{ }} - {\text{ }}P\left( {{\text{ }}A{\text{ }} \cap {\text{ }}B{\text{ }}} \right)
Putting , value of P( A  B ) = 0P\left( {{\text{ }}A{\text{ }} \cap {\text{ }}B{\text{ }}} \right){\text{ }} = {\text{ }}0
P( A  B ) = P(A) + P(B)P\left( {{\text{ }}A{\text{ }} \cup {\text{ }}B{\text{ }}} \right){\text{ }} = {\text{ }}P\left( A \right){\text{ }} + {\text{ }}P\left( B \right)
P( A  B ) = 1/4 + 1/4\Rightarrow P\left( {{\text{ }}A{\text{ }} \cup {\text{ }}B{\text{ }}} \right){\text{ }} = {\text{ }}1/4{\text{ }} + {\text{ }}1/4
P( A  B ) = 1/2\Rightarrow P\left( {{\text{ }}A{\text{ }} \cup {\text{ }}B{\text{ }}} \right){\text{ }} = {\text{ }}1/2
P( A  B ) = 0.5\Rightarrow P\left( {{\text{ }}A{\text{ }} \cup {\text{ }}B{\text{ }}} \right){\text{ }} = {\text{ }}0.5
P( A  B ) = P( A + B )\Rightarrow P\left( {{\text{ }}A{\text{ }} \cup {\text{ }}B{\text{ }}} \right){\text{ }} = {\text{ }}P\left( {{\text{ }}A{\text{ }} + {\text{ }}B{\text{ }}} \right)
As , both have the same meaning
So ,
P( A + B ) = 0.5P\left( {{\text{ }}A{\text{ }} + {\text{ }}B{\text{ }}} \right){\text{ }} = {\text{ }}0.5
Thus , the correct option is (4)\left( 4 \right)

Note: We don’t need the values of P(C)P\left( C \right)and P(AC)P\left( {AC} \right)for solving the required problem . It was just to create a sense of confusion . Using the data we can calculate the value of P( A + C )of{\text{ }}P\left( {{\text{ }}A{\text{ }} + {\text{ }}C{\text{ }}} \right)as we can evaluate the value of P(A  C)P\left( {A{\text{ }} \cap {\text{ }}C} \right)from the formula stated above .
We find the relation by using the conditional probability formula . If AA and BBare mutually exclusive events , thenP(A  B) = P(A) + P(B)P\left( {A{\text{ }} \cup {\text{ }}B} \right){\text{ }} = {\text{ }}P\left( A \right){\text{ }} + {\text{ }}P\left( B \right). The basic property of probability is that the probability of an event can never be greater than11.
If two events AA and BB are independent , then
P(E  F) =P(E) × P(F)P\left( {E{\text{ }} \cap {\text{ }}F} \right){\text{ }} = P\left( E \right){\text{ }} \times {\text{ }}P\left( F \right)
P(E  F) = P(E) , P(F) 0P\left( {E{\text{ }}|{\text{ }}F} \right){\text{ }} = {\text{ }}P\left( E \right){\text{ }},{\text{ }}P\left( F \right){\text{ }} \ne 0
P(F  E) = P(F) , P(E)  0P\left( {F{\text{ }}|{\text{ }}E} \right){\text{ }} = {\text{ }}P\left( F \right){\text{ }},{\text{ }}P\left( E \right){\text{ }} \ne {\text{ }}0