Solveeit Logo

Question

Question: If a, b and c are three distinct real numbers in G.P and \[a+b+c=xb\], then the value of x cannot be...

If a, b and c are three distinct real numbers in G.P and a+b+c=xba+b+c=xb, then the value of x cannot be
(a) 4
(b) –3
(c) –2
(d) 2

Explanation

Solution

We start solving the problem by recalling the general form of terms in a G.P (Geometric Progression). We assume a common ratio as ‘r’ and write all the given numbers in terms of ‘a’ and ‘r’. After writing we get a quadratic equation in r after making subsequent arrangements. We take discriminant greater than zero to get the solution set for x.

Complete step-by-step answer:
According to the problem, we have three distinct numbers a, b and c which are in G.P (Geometric Progression) and these numbers satisfy a+b+c=xba+b+c=xb. We need to find the range of x so that the values that are not valid for x can be chosen.
We know that the general terms of the G.P (Geometric Progression) is defined as pp, prpr, pr2p{{r}^{2}},…….,prn1p{{r}^{n-1}}. Where r is a common ratio. We apply this definition to the numbers a, b and c.
We get b=arb=ar and c=ar2c=a{{r}^{2}}. We substitute these values in a+b+c=xba+b+c=xb.
a+ar+ar2=x(ar)\Rightarrow a+ar+a{{r}^{2}}=x\left( ar \right).
a+arxar+ar2=0\Rightarrow a+ar-xar+a{{r}^{2}}=0.
a+ar(1x)+ar2=0\Rightarrow a+ar\left( 1-x \right)+a{{r}^{2}}=0.
1+r(1x)+r2=0\Rightarrow 1+r\left( 1-x \right)+{{r}^{2}}=0.
r2+r(1x)+1=0\Rightarrow {{r}^{2}}+r\left( 1-x \right)+1=0 -(1).
We have given that a, b and c as three distinct numbers. So, we have three distinct real values of a, b and c. If we cannot have a solution for equation (1), then a, b and c cannot be distinct values.
So, equation (1) must have real roots for ‘r’ in order to get the distinct values for a, b and c.
We know that to get real for the quadratic equation ax2+bx+c=0a{{x}^{2}}+bx+c=0, we should have discriminant (D) greater than 0 i.e., D=b24ac>0D=\sqrt{{{b}^{2}}-4ac}>0.
So, take determinant for equation (1).
(1x)24(1)(1)>0\Rightarrow {{\left( 1-x \right)}^{2}}-4\left( 1 \right)\left( 1 \right)>0.
x22x+14>0\Rightarrow {{x}^{2}}-2x+1-4>0.
x22x3>0\Rightarrow {{x}^{2}}-2x-3>0.
x23x+x3>0\Rightarrow {{x}^{2}}-3x+x-3>0.
x.(x3)+1.(x3)>0\Rightarrow x.\left( x-3 \right)+1.\left( x-3 \right)>0.
(x+1)(x3)>0\Rightarrow \left( x+1 \right)\left( x-3 \right)>0 -(2).
We know that the solution set for x in the inequality (xa).(xb)0\left( x-a \right).\left( x-b \right)\ge 0 and a<ba < b is x<a or x>bx < a \text{ or }x > b.
We get the solution set for x of the inequality in equation (2) is x<1 or x>3x < -1\text{ or }x > 3.
From options we can see that 2 is not in the solution set x<1 or x>3 x < -1\text{ or } x > 3.
x cannot be equal to 2.

So, the correct answer is “Option d”.

Note: If we take real and equal root conditions for equation (1), we get as follows.
D=b24ac=0\Rightarrow D=\sqrt{{{b}^{2}}-4ac}=0.
(1x)24(1)(1)=0\Rightarrow {{\left( 1-x \right)}^{2}}-4\left( 1 \right)\left( 1 \right)=0.
x22x+14=0\Rightarrow {{x}^{2}}-2x+1-4=0.
x22x3=0\Rightarrow {{x}^{2}}-2x-3=0.
x23x+x3=0\Rightarrow {{x}^{2}}-3x+x-3=0.
x.(x3)+1.(x3)=0\Rightarrow x.\left( x-3 \right)+1.\left( x-3 \right)=0.
(x+1)(x3)=0\Rightarrow \left( x+1 \right)\left( x-3 \right)=0.
(x+1)=0 or (x3)=0\Rightarrow \left( x+1 \right)=0\text{ or }\left( x-3 \right)=0.
x=1 or x=3\Rightarrow x=-1\text{ or }x=3.
Let us substitute x=1x=-1 in equation (1).
r2+r(1(1))+1=0\Rightarrow {{r}^{2}}+r\left( 1-\left( -1 \right) \right)+1=0.
r2+r(1+1)+1=0\Rightarrow {{r}^{2}}+r\left( 1+1 \right)+1=0.
r2+2r+1=0\Rightarrow {{r}^{2}}+2r+1=0.
(r+1)2=0\Rightarrow {{\left( r+1 \right)}^{2}}=0.
r+1=0\Rightarrow r+1=0.
r=1\Rightarrow r=-1.
We can see that c=a(1)2c=a{{\left( -1 \right)}^{2}}.
c=a(1)\Rightarrow c=a\left( 1 \right).
c=a\Rightarrow c=a, but we need all the numbers a, b and c distinct. So, x cannot be equal to -1.
Let us substitute x=3x=3 in equation (1).
r2+r(13)+1=0\Rightarrow {{r}^{2}}+r\left( 1-3 \right)+1=0.
r2+r(2)+1=0\Rightarrow {{r}^{2}}+r\left( -2 \right)+1=0.
r22r+1=0\Rightarrow {{r}^{2}}-2r+1=0.
(r1)2=0\Rightarrow {{\left( r-1 \right)}^{2}}=0.
r1=0\Rightarrow r-1=0.
r=1\Rightarrow r=1.
We can see that c=a(1)2c=a{{\left( 1 \right)}^{2}}.
c=a(1)\Rightarrow c=a\left( 1 \right).
c=a\Rightarrow c=a, but we need all the numbers a, b and c distinct. So, x cannot be equal to 3.