Question
Question: If a, b and c are positive real numbers and \(\theta ={{\tan }^{-1}}\left( \sqrt{\dfrac{a\left( a+b+...
If a, b and c are positive real numbers and θ=tan−1(bca(a+b+c))+tan−1(cab(a+b+c))+tan−1(abc(a+b+c)), then find the value of the angle θ?
(a) 4π,
(b) 2π,
(c) 3π,
(d) 0.
Solution
We start solving the problem by recalling the sum of inverse of the tangent of 3 values i.e., tan−1(x)+tan−1(y)+tan−1(z)=tan−1(1−xy−yz−zxx+y+z−xyz). We apply this for the equation given in the problem to find the angle θ. We then make necessary arrangements inside the inverse of tangent and use the facts ba=ba, ab=a2b to get a value in the numerator. We then make necessary calculations to find the value of the required angle θ.
Complete step-by-step solution:
According to the problem, we have given a, b and c are positive real numbers and θ=tan−1(bca(a+b+c))+tan−1(cab(a+b+c))+tan−1(abc(a+b+c)). We need to find the value of angle θ.
We know that tan−1(x)+tan−1(y)+tan−1(z)=tan−1(1−xy−yz−zxx+y+z−xyz). We use this to calculate the value of angle θ.
So, we have θ=tan−11−(bca(a+b+c)×cab(a+b+c))−(cab(a+b+c)×abc(a+b+c))−(abc(a+b+c)×bca(a+b+c))bca(a+b+c)+cab(a+b+c)+abc(a+b+c)−(bca(a+b+c)×cab(a+b+c)×abc(a+b+c)).
⇒θ=tan−11−abc2ab(a+b+c)2−a2bcbc(a+b+c)2−ab2cac(a+b+c)2abca2(a+b+c)+abcb2(a+b+c)+abcc2(a+b+c)−((abc)2abc(a+b+c)3).
We use the fact that ba=ba to solve for the angle θ.
⇒θ=tan−11−a2b2c2a2b2(a+b+c)2−a2b2c2b2c2(a+b+c)2−a2b2c2a2c2(a+b+c)2abca2(a+b+c)+abcb2(a+b+c)+abcc2(a+b+c)−(abc)(a+b+c)3.
⇒θ=tan−11−a2b2c2a2b2(a+b+c)2−a2b2c2b2c2(a+b+c)2−a2b2c2c2a2(a+b+c)2abca(a+b+c)+abcb(a+b+c)+abcc(a+b+c)−(abc)(a+b+c)3.
⇒θ=tan−11−(abcab(a+b+c))−(abcbc(a+b+c))−(abcca(a+b+c))((abc(a+b+c))×(a+b+c))−(abc)(a+b+c)3.
We use the fact that ab=a2b to solve for the angle θ.
⇒θ=tan−11−((abcab(a+b+c))+(abcbc(a+b+c))+(abcca(a+b+c)))abc(a+b+c)×(a+b+c)2−(abc)(a+b+c)3.
⇒θ=tan−11−((abcab(a+b+c)+bc(a+b+c)+ca(a+b+c)))abc(a+b+c)3−(abc)(a+b+c)3.
We use the fact that ba=ba to solve for the angle θ.
⇒θ=tan−11−(abc(a+b+c)(ab+bc+ca))(abc)(a+b+c)3−(abc)(a+b+c)3.
We can see that the two terms in the numerator are the same.
⇒θ=tan−1(abcabc−((a+b+c)(ab+bc+ca)))0.
We know that a0=0.
⇒θ=tan−1(0).
⇒θ=0o.
We have found the value of the angle θ as 0o.
∴ The value of the angles θ is 0o.
The correct option for the given problem is (d).
Note: We can also solve this problem by assuming α=tan−1(bca(a+b+c)), β=tan−1(cab(a+b+c)), δ=tan−1(abc(a+b+c)) and using the formula tan(α+β+δ)=1−tanαtanβ−tanβtanδ−tanδtanαtanα+tanβ+tanδ−tanαtanβtanδ to get the required value. Since the options are between 0 and 2π, we opted for 0. If the problem is about solving the trigonometric equation then we have to write the general solution that represents all the angles whose tangent is 0.