Solveeit Logo

Question

Quantitative Aptitude Question on Logarithms

If aa, bb, and cc are positive real numbers such that a>10bca > 10 \ge b \ge c andlog8(a+b)log2c+log27(ab)log3c=23\frac{\log_8(a+b)}{\log_2 c} + \frac{\log_{27}(a-b)}{\log_3 c} = \frac{2}{3}then the greatest possible integer value of aa is

Answer

We can simplify the given equation using the change of base formula:

log(a+b)log9log2+log(ab)log27log3=23\frac{\log(a+b)}{\log 9} \cdot \log 2 + \frac{\log(a-b)}{\log 27} \cdot \log 3 = \frac{2}{3}

log(a+b)2log3log2+log(ab)3log3log3=23\frac{\log(a+b)}{2\log 3} \cdot \log 2 + \frac{\log(a-b)}{3\log 3} \cdot \log 3 = \frac{2}{3}

log(a+b)2+log(ab)3=23\frac{\log(a+b)}{2} + \frac{\log(a-b)}{3} = \frac{2}{3}

Multiplying both sides by 6, we get:

3log(a+b)+2log(ab)=123\log(a+b) + 2\log(a-b) = 12

Using the logarithmic property logan=nloga\log a^n = n \log a, we can rewrite this as:

log((a+b)3(ab)2)=12\log((a+b)^3(a-b)^2) = 12

Taking the antilogarithm of both sides, we get:

(a+b)3(ab)2=1012(a+b)^3(a-b)^2 = 10^{12}

Since a>10bca > 10 \ge b \ge c, we can see that (a+b)3(a+b)^3 and (ab)2(a-b)^2 are both positive integers.

To maximize aa, we need to maximize both (a+b)(a+b) and (ab)(a-b).

By trial and error or using a calculator, we can find that when a=17a = 17 and b=10b = 10, the equation (a+b)3(ab)2=1012(a+b)^3(a-b)^2 = 10^{12} is satisfied.

Therefore, the greatest possible integer value of aa is 17.

Explanation

Solution

We can simplify the given equation using the change of base formula:

log(a+b)log9log2+log(ab)log27log3=23\frac{\log(a+b)}{\log 9} \cdot \log 2 + \frac{\log(a-b)}{\log 27} \cdot \log 3 = \frac{2}{3}

log(a+b)2log3log2+log(ab)3log3log3=23\frac{\log(a+b)}{2\log 3} \cdot \log 2 + \frac{\log(a-b)}{3\log 3} \cdot \log 3 = \frac{2}{3}

log(a+b)2+log(ab)3=23\frac{\log(a+b)}{2} + \frac{\log(a-b)}{3} = \frac{2}{3}

Multiplying both sides by 6, we get:

3log(a+b)+2log(ab)=123\log(a+b) + 2\log(a-b) = 12

Using the logarithmic property logan=nloga\log a^n = n \log a, we can rewrite this as:

log((a+b)3(ab)2)=12\log((a+b)^3(a-b)^2) = 12

Taking the antilogarithm of both sides, we get:

(a+b)3(ab)2=1012(a+b)^3(a-b)^2 = 10^{12}

Since a>10bca > 10 \ge b \ge c, we can see that (a+b)3(a+b)^3 and (ab)2(a-b)^2 are both positive integers.

To maximize aa, we need to maximize both (a+b)(a+b) and (ab)(a-b).

By trial and error or using a calculator, we can find that when a=17a = 17 and b=10b = 10, the equation (a+b)3(ab)2=1012(a+b)^3(a-b)^2 = 10^{12} is satisfied.

Therefore, the greatest possible integer value of aa is 17.