Question
Question: If a, b and c are non-zero numbers then the inverse of the matrix \[\text{A=}\left| \begin{matrix} ...
If a, b and c are non-zero numbers then the inverse of the matrix A=a 0 0 0b000c is equal to
& A.\left| \begin{matrix} {{a}^{-1}} & 0 & 0 \\\ 0 & {{b}^{-1}} & 0 \\\ 0 & 0 & {{c}^{-1}} \\\ \end{matrix} \right| \\\ & B.\dfrac{1}{abc}\left| \begin{matrix} {{a}^{-1}} & 0 & 0 \\\ 0 & {{b}^{-1}} & 0 \\\ 0 & 0 & {{c}^{-1}} \\\ \end{matrix} \right| \\\ & \text{C}\text{.}\dfrac{1}{abc}\left| \begin{matrix} 1 & 0 & 0 \\\ 0 & 1 & 0 \\\ 0 & 0 & 1 \\\ \end{matrix} \right| \\\ & \text{D}\text{.}\dfrac{1}{abc}\left| \begin{matrix} a & 0 & 0 \\\ 0 & b & 0 \\\ 0 & 0 & c \\\ \end{matrix} \right| \\\ \end{aligned}$$Explanation
Solution
We will use the basic definition in terms of matrices to solve the question. A minor is the determinant of a square matrix formed by deleting one row and one column from a longer matrix. The cofactor is the value obtained on minor with using sign '+' or '-' depending upon element position and the transpose of a matrix is obtained by reversing rows and columns of each element of the original matrix. The adjoint of a matrix is the transpose of the cofactor matrix. Now, we can use the below formula to get the answer, A−1=∣A∣1[adjA]
Complete step-by-step solution:
Given that matrix,