Solveeit Logo

Question

Question: If a, b and c are non zero numbers, then \(\Delta = \left| \begin{matrix} b^{2}c^{2} & bc & b + c \...

If a, b and c are non zero numbers, then

Δ=b2c2bcb+cc2a2cac+aa2b2aba+b\Delta = \left| \begin{matrix} b^{2}c^{2} & bc & b + c \\ c^{2}a^{2} & ca & c + a \\ a^{2}b^{2} & ab & a + b \end{matrix} \right| is equal to.

A

abcabc

B

a2b2c2a^{2}b^{2}c^{2}

C

ab+bc+caab + bc + ca

D

None of these

Answer

None of these

Explanation

Solution

Multiplying 149357579\left| \begin{matrix} 1 & 4 & 9 \\ 3 & 5 & 7 \\ 5 & 7 & 9 \end{matrix} \right| by a,R2a,R_{2} by bb and R3R_{3} by c,c, we have

ab^{2}c^{2} & abc & ab + ac \\ a^{2}bc^{2} & abc & bc + ab \\ a^{2}b^{2}c & abc & ac + bc \end{matrix} \right|$$ = $\frac{a^{2}b^{2}c^{2}}{abc}\left| \begin{matrix} bc & 1 & ab + ac \\ ac & 1 & bc + ab \\ ab & 1 & ac + bc \end{matrix} \right| = abc\left| \begin{matrix} bc & 1 & \Sigma ab \\ ac & 1 & \Sigma ab \\ ab & 1 & \Sigma ab \end{matrix} \right|$ {by $C_{3} \rightarrow C_{3} + C_{1}$} = $abc.\Sigma ab\left| \begin{matrix} bc & 1 & 1 \\ ca & 1 & 1 \\ ab & 1 & 1 \end{matrix} \right| = 0$, [Since $C_{2} \equiv C_{3}$]. **Trick :** Put $a = 1,b = 2,c = 3$ and check it.