Question
Question: If a, b and c are non zero numbers, then \(\Delta = \left| \begin{matrix} b^{2}c^{2} & bc & b + c \...
If a, b and c are non zero numbers, then
Δ=b2c2c2a2a2b2bccaabb+cc+aa+b is equal to.
A
abc
B
a2b2c2
C
ab+bc+ca
D
None of these
Answer
None of these
Explanation
Solution
Multiplying 135457979 by a,R2 by b and R3 by c, we have
ab^{2}c^{2} & abc & ab + ac \\ a^{2}bc^{2} & abc & bc + ab \\ a^{2}b^{2}c & abc & ac + bc \end{matrix} \right|$$ = $\frac{a^{2}b^{2}c^{2}}{abc}\left| \begin{matrix} bc & 1 & ab + ac \\ ac & 1 & bc + ab \\ ab & 1 & ac + bc \end{matrix} \right| = abc\left| \begin{matrix} bc & 1 & \Sigma ab \\ ac & 1 & \Sigma ab \\ ab & 1 & \Sigma ab \end{matrix} \right|$ {by $C_{3} \rightarrow C_{3} + C_{1}$} = $abc.\Sigma ab\left| \begin{matrix} bc & 1 & 1 \\ ca & 1 & 1 \\ ab & 1 & 1 \end{matrix} \right| = 0$, [Since $C_{2} \equiv C_{3}$]. **Trick :** Put $a = 1,b = 2,c = 3$ and check it.