Solveeit Logo

Question

Question: If A, B, and C are acute angles such that \(\tan A + \tan B + \tan C = \tan A\tan B\tan C\). Then \(...

If A, B, and C are acute angles such that tanA+tanB+tanC=tanAtanBtanC\tan A + \tan B + \tan C = \tan A\tan B\tan C. Then cotAcotBcotC=\cot A\cot B\cot C =
a) 13 \leqslant \dfrac{1}{{\sqrt 3 }}
b) 123 \leqslant \dfrac{1}{{2\sqrt 3 }}
c) 133 \leqslant \dfrac{1}{{3\sqrt 3 }}
d)None of these

Explanation

Solution

Acute angles are the angle which is less than 900{90^0}. We always know that if the angles are acute angles the Arithmetic mean of three angles is greater than the geometric mean of the three angles. Arithmetic mean is nothing but the average of three angles and the geometric mean is the cube root of three angles.
Formula:
The Arithmetic mean of three angles is less than the geometric mean of the three angles. Since,
Arithmetic meangeometric meanArithmetic\ mean \geqslant geometric\ mean
The Arithmetic mean is nothing but the average of three values.
Arithmetic mean=a+b+c3Arithmetic\ mean = \dfrac{{a + b + c}}{3}
The geometric mean is the cube root of three values.
geometric mean=a×b×c3geometric\ mean = \sqrt[3]{{a \times b \times c}}

Complete step-by-step answer:
Given,
Three angles are given such as AA,BBand CC.
The given condition tanA+tanB+tanC=tanAtanBtanC\tan A + \tan B + \tan C = \tan A\tan B\tan C
We have to find cotA+cotB+cotC=\cot A + \cot B + \cot C =
We know the condition that if the angles are acute angle the Arithmetic mean of three angles are greater than the geometric mean of the three angles.
According to the question,
Substitute a=tanAa = \tan A, b=tanBb = \tan Band c=tanCc = \tan C.
We know that the arithmetic mean Arithmetic mean=a+b+c3Arithmetic\ mean = \dfrac{{a + b + c}}{3}
We know that the geometric mean geometric mean=a×b×c3geometric\ mean = \sqrt[3]{{a \times b \times c}}
Substitute a=tanAa = \tan A, b=tanBb = \tan Band c=tanCc = \tan C.
Arithmetic mean=tanA+tanB+tanC3Arithmetic\ mean = \dfrac{{\tan A + \tan B + \tan C}}{3}
geometric mean=tanA×tanB×tanC3geometric\ mean = \sqrt[3]{{\tan A \times \tan B \times \tan C}}
We know that the relation between the arithmetic mean and geometric mean,
Arithmetic meangeometric meanArithmetic\ mean \geqslant geometric\ mean
Substituting Arithmetic mean=tanA+tanB+tanC3Arithmetic\ mean = \dfrac{{\tan A + \tan B + \tan C}}{3} and geometric mean=tanA×tanB×tanC3geometric\ mean = \sqrt[3]{{\tan A \times \tan B \times \tan C}}
tanA+tanB+tanC3tanA×tanB×tanC3\dfrac{{\tan A + \tan B + \tan C}}{3} \geqslant \sqrt[3]{{\tan A \times \tan B \times \tan C}}
According to the given, tanA+tanB+tanC=tanAtanBtanC\tan A + \tan B + \tan C = \tan A\tan B\tan C
Converting the cube root to the power of another side,
(tanA+tanB+tanC)333tanA×tanB×tanC\dfrac{{{{\left( {\tan A + \tan B + \tan C} \right)}^3}}}{{{3^3}}} \geqslant \tan A \times \tan B \times \tan C
Expanding cube value in the denominator,
(tanA+tanB+tanC)327tanA×tanB×tanC\dfrac{{{{\left( {\tan A + \tan B + \tan C} \right)}^3}}}{{27}} \geqslant \tan A \times \tan B \times \tan C
By substituting tanA+tanB+tanC=tanAtanBtanC\tan A + \tan B + \tan C = \tan A\tan B\tan C, we get
(tanAtanBtanC)327tanA×tanB×tanC\dfrac{{{{\left( {\tan A\tan B\tan C} \right)}^3}}}{{27}} \geqslant \tan A \times \tan B \times \tan C
Bringing terms from right side to left side, we get
(tanAtanBtanC)327×tanA×tanB×tanC1\dfrac{{{{\left( {\tan A\tan B\tan C} \right)}^3}}}{{27 \times \tan A \times \tan B \times \tan C}} \geqslant 1
Dividing the terms between the numerator and the equator, we get,
(tanAtanBtanC)2271\dfrac{{{{\left( {\tan A\tan B\tan C} \right)}^2}}}{{27}} \geqslant 1
By reciprocating the terms, we get
27(tanAtanBtanC)21\dfrac{{27}}{{{{\left( {\tan A\tan B\tan C} \right)}^2}}} \leqslant 1
We know cotA=1tanA\cot A = \dfrac{1}{{\tan A}}, by substituting we get
(cotAcotBcotC)2×271{\left( {\cot A\cot B\cot C} \right)^2} \times 27 \leqslant 1
By bringing the value in the numerator to the denominator of another side, we get,
(cotAcotBcotC)2127{\left( {\cot A\cot B\cot C} \right)^2} \leqslant \dfrac{1}{{27}}
Squaring on both sides we get,
(cotAcotBcotC)133\left( {\cot A\cot B\cot C} \right) \leqslant \dfrac{1}{{3\sqrt 3 }}

So, the correct answer is “Option C”.

Note: Always remember to find the relation between the arithmetic mean and geometric mean which is if the angles are acute angle the Arithmetic mean of three angles are greater than the geometric mean of the three angles. Remember tan is reciprocal to the cot. If we reciprocate the terms the lesser sign will be changed to a greater sign.