Solveeit Logo

Question

Mathematics Question on complex numbers

If a±ba ≠ ±b and are purely real, z ϵ complex number, Re(az2+bz)=aRe(az^{2}+bz)=a and Re(bz2+az)=bRe(bz^{2}+az)=b then number of value of z possible is

A

0

B

1

C

2

D

3

Answer

0

Explanation

Solution

a(x2y2)+bx=a..(i)a(x^2-y^2)+bx=a…..(i)
b(x2y2)+ax=b..(ii)b(x^2-y^2)+ax=b…..(ii)
(i)(ii)(i)-(ii)
(ab)(x2y2)+(ba)x=ab    (ab)(a-b)(x^2-y^2)+(b-a)x=a-b\ \ \ \ (a≠b)
x2y2x=1⇒ x^2-y^2-x=1
(i)+(ii)(i)+(ii)
(a+b)(x2y2)+x(a+b)=a+b(a+b)(x^2-y^2)+x(a+b)=a+b (ab) (a≠-b)
x2y2+x=1⇒ x^2-y^2+x=1
x=0⇒x=0
y2=1⇒y^2=-1
therefore, no complex number is possible.
The correct option is (A): 0