Solveeit Logo

Question

Question: If A + B = π/3where A, B \> 0 then minimum value of secA + secB is equal to...

If A + B = π/3where A, B > 0 then minimum value of

secA + secB is equal to

A

4

B

8

C

6

D

None of these

Answer

4

Explanation

Solution

Clearly A, B ∈ (0,π3)\left( 0 , \frac { \pi } { 3 } \right). For y = sec x, dydx\frac { d y } { d x } and d2ydx2\frac { d ^ { 2 } y } { d x ^ { 2 } } are positive in (0,π3)\left( 0 , \frac { \pi } { 3 } \right). Hence

sec A + sec B ≥ 2 sec(A+B2)\left( \frac { A + B } { 2 } \right) = 2secπ6=432 \sec \frac { \pi } { 6 } = \frac { 4 } { \sqrt { 3 } }