Solveeit Logo

Question

Question: If $a > b > 1$ and $\frac{1}{\log_a b} + \frac{1}{\log_b a} = \sqrt{1229}$, find the value of $\frac...

If a>b>1a > b > 1 and 1logab+1logba=1229\frac{1}{\log_a b} + \frac{1}{\log_b a} = \sqrt{1229}, find the value of 1logabb1logaba\frac{1}{\log_{ab} b} - \frac{1}{\log_{ab} a}.

Answer

35

Explanation

Solution

Let y=logbay = \log_b a. The given equation is 1logab+1logba=1229\frac{1}{\log_a b} + \frac{1}{\log_b a} = \sqrt{1229}. Using the property of logarithms 1logxy=logyx\frac{1}{\log_x y} = \log_y x, the equation becomes: logba+logab=1229\log_b a + \log_a b = \sqrt{1229}. Since logab=1logba\log_a b = \frac{1}{\log_b a}, we can write the equation in terms of yy: y+1y=1229y + \frac{1}{y} = \sqrt{1229}.

We need to find the value of the expression E=1logabb1logabaE = \frac{1}{\log_{ab} b} - \frac{1}{\log_{ab} a}. Using the property 1logxy=logyx\frac{1}{\log_x y} = \log_y x, the expression becomes: E=logb(ab)loga(ab)E = \log_b(ab) - \log_a(ab). Using the property logx(yz)=logxy+logxz\log_x(yz) = \log_x y + \log_x z, we expand the terms: logb(ab)=logba+logbb\log_b(ab) = \log_b a + \log_b b. loga(ab)=logaa+logab\log_a(ab) = \log_a a + \log_a b. So, E=(logba+logbb)(logaa+logab)E = (\log_b a + \log_b b) - (\log_a a + \log_a b). Since logbb=1\log_b b = 1 and logaa=1\log_a a = 1, and using y=logbay = \log_b a and logab=1y\log_a b = \frac{1}{y}, we get: E=(y+1)(1+1y)=y+111y=y1yE = (y + 1) - (1 + \frac{1}{y}) = y + 1 - 1 - \frac{1}{y} = y - \frac{1}{y}.

We are given y+1y=1229y + \frac{1}{y} = \sqrt{1229} and we need to find y1yy - \frac{1}{y}. We know the algebraic identity (AB)2=(A+B)24AB(A - B)^2 = (A + B)^2 - 4AB. Let A=yA = y and B=1yB = \frac{1}{y}. Then AB=y1y=1AB = y \cdot \frac{1}{y} = 1. So, (y1y)2=(y+1y)24(y1y)=(y+1y)24(y - \frac{1}{y})^2 = (y + \frac{1}{y})^2 - 4(y \cdot \frac{1}{y}) = (y + \frac{1}{y})^2 - 4. Substitute the value of y+1yy + \frac{1}{y}: (y1y)2=(1229)24=12294=1225(y - \frac{1}{y})^2 = (\sqrt{1229})^2 - 4 = 1229 - 4 = 1225. Taking the square root of both sides: y1y=±1225y - \frac{1}{y} = \pm \sqrt{1225}. We calculate 1225\sqrt{1225}: 302=90030^2 = 900, 402=160040^2 = 1600. The number ends in 5, so the root must end in 5. Let's try 35. 352=(30+5)2=900+2×30×5+25=900+300+25=122535^2 = (30+5)^2 = 900 + 2 \times 30 \times 5 + 25 = 900 + 300 + 25 = 1225. So, y1y=±35y - \frac{1}{y} = \pm 35.

We need to determine the sign of y1yy - \frac{1}{y}. We are given that a>b>1a > b > 1. Consider y=logbay = \log_b a. Since b>1b > 1, the logarithm function with base bb is an increasing function. Since a>ba > b, we have logba>logbb\log_b a > \log_b b. logbb=1\log_b b = 1. So, logba>1\log_b a > 1, which means y>1y > 1. If y>1y > 1, then 1y<1\frac{1}{y} < 1. Therefore, y1yy - \frac{1}{y} must be positive. So, y1y=35y - \frac{1}{y} = 35.

The value of the expression 1logabb1logaba\frac{1}{\log_{ab} b} - \frac{1}{\log_{ab} a} is 35.