Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

If a>b>0a > b > 0, then the value of Tan1(ab)+Tan1(a+bab)Tan^{-1} \left(\frac{a}{b}\right)+Tan^{-1}\left(\frac {a+b}{a-b}\right)

A

neither a nor b

B

a and not b

C

b and not a

D

both a and b

Answer

neither a nor b

Explanation

Solution

tan1(ab)+tan1(a+bab)\tan^{-1} \left(\frac{a}{b}\right) +\tan^{-1} \left(\frac{a+b}{a-b}\right)
=tan1(ab+a+bab1ab(a+bab))=\tan^{-1} \left(\frac{\frac{a}{b} + \frac{a+b}{a-b}}{1- \frac{a}{b}\left(\frac{a+b}{a-b}\right)}\right)
=tan1(a2ab+ab+b2abb2a2ab)=\tan^{-1} \left(\frac{a^{2}-ab +ab+b^{2}}{ab -b^{2} -a^{2} -ab}\right)
=tan1(a2+b2a2+b2)=tan1(1)=\tan^{-1} \left(- \frac{a^{2}+b^{2}}{a^{2}+b^{2}}\right) =\tan^{-1}\left(-1\right)
\therefore The value is neither depends on a nor b.