Solveeit Logo

Question

Question: If a > b > 0, then the minimum value of \(a\sec \theta -b\tan \theta \ \forall \theta \in \left( 0,\...

If a > b > 0, then the minimum value of asecθbtanθ θ(0,π2)a\sec \theta -b\tan \theta \ \forall \theta \in \left( 0,\dfrac{\pi }{2} \right)
(a) a2b2\sqrt{{{a}^{2}}-{{b}^{2}}}
(b) a – b
(c) ab\sqrt{a-b}
(d) (a2b2)32{{\left( {{a}^{2}}-{{b}^{2}} \right)}^{\dfrac{3}{2}}}

Explanation

Solution

To find the minimum of any expression, we need to derivate the expression once with respect to the variable of the expression and equate it to zero. Then we will find the value of the variable and substitute the variable in the original expression. This will give us the minimum or maximum of the expression. We need to keep in mind that derivative sec x is sec x tan x and tan x is sec2x{{\sec }^{2}}\text{x}.

Complete step-by-step answer :
The expression given to us is asecθbtanθ θ(0,π2)a\sec \theta -b\tan \theta \ \forall \theta \in \left( 0,\dfrac{\pi }{2} \right) and we also know that a > b > 0.
So, let f(θ)=asecθbtanθf\left( \theta \right)=a\sec \theta -b\tan \theta .
Now, to find the extreme values, we will derivate this f(θ)f\left( \theta \right) once and equate it to 0.
We know that derivative sec x is sec x tan x and tan x is sec2x{{\sec }^{2}}\text{x}.
Thus f(θ)=asecθtanθbsec2θf'\left( \theta \right)=a\sec \theta \tan \theta -b{{\sec }^{2}}\theta
We shall now substitute f(θ)=0f'\left( \theta \right)=0.
asecθtanθbsec2θ=0\Rightarrow a\sec \theta \tan \theta -b{{\sec }^{2}}\theta =0
It is evident that we can take secθ\sec \theta as common.
secθ(atanθbsecθ)=0\Rightarrow \sec \theta \left( a\tan \theta -b\sec \theta \right)=0
Now, either secθ\sec \theta = 0 or atanθbsecθa\tan \theta -b\sec \theta = 0.
But secθ\sec \theta is never 0.
Thus, we know that atanθbsecθa\tan \theta -b\sec \theta = 0
atanθ=bsecθ sinθ=ba \begin{aligned} & \Rightarrow a\tan \theta =b\sec \theta \\\ & \Rightarrow \sin \theta =\dfrac{b}{a} \\\ \end{aligned}
This means in a right angled triangle, opp = b and hyp = a, thus adj = a2b2\sqrt{{{a}^{2}}-{{b}^{2}}}.

tanθ=ba2b2 secθ=aa2b2 \begin{aligned} & \Rightarrow \tan \theta =\dfrac{b}{\sqrt{{{a}^{2}}-{{b}^{2}}}} \\\ & \Rightarrow \sec \theta =\dfrac{a}{\sqrt{{{a}^{2}}-{{b}^{2}}}} \\\ \end{aligned}
Thus, if we shall substitute tanθ=ba2b2\tan \theta =\dfrac{b}{\sqrt{{{a}^{2}}-{{b}^{2}}}} and secθ=aa2b2\sec \theta =\dfrac{a}{\sqrt{{{a}^{2}}-{{b}^{2}}}} in the original expression asecθbtanθa\sec \theta -b\tan \theta .
a(aa2b2)b(ba2b2) a2a2b2b2a2b2 \begin{aligned} & \Rightarrow a\left( \dfrac{a}{\sqrt{{{a}^{2}}-{{b}^{2}}}} \right)-b\left( \dfrac{b}{\sqrt{{{a}^{2}}-{{b}^{2}}}} \right) \\\ & \Rightarrow \dfrac{{{a}^{2}}}{\sqrt{{{a}^{2}}-{{b}^{2}}}}-\dfrac{{{b}^{2}}}{\sqrt{{{a}^{2}}-{{b}^{2}}}} \\\ \end{aligned}
As the denominator is equal, we can carry the operation in the numerator.
a2b2a2b2\Rightarrow \dfrac{{{a}^{2}}-{{b}^{2}}}{\sqrt{{{a}^{2}}-{{b}^{2}}}}
We shall now rationalise the denominator. To rationalise we will multiply and divide the resultant expression by a2b2\sqrt{{{a}^{2}}-{{b}^{2}}}.
a2b2a2b2×a2b2a2b2\Rightarrow \dfrac{{{a}^{2}}-{{b}^{2}}}{\sqrt{{{a}^{2}}-{{b}^{2}}}}\times \dfrac{\sqrt{{{a}^{2}}-{{b}^{2}}}}{\sqrt{{{a}^{2}}-{{b}^{2}}}}
We know that the product of a2b2\sqrt{{{a}^{2}}-{{b}^{2}}} and a2b2\sqrt{{{a}^{2}}-{{b}^{2}}} is a2b2{{a}^{2}}-{{b}^{2}}. a2b2{{a}^{2}}-{{b}^{2}} in the numerator and a2b2{{a}^{2}}-{{b}^{2}} in the denominator cancels out.
(a2b2)a2b2(a2b2) a2b2 \begin{aligned} & \Rightarrow \dfrac{\left( {{a}^{2}}-{{b}^{2}} \right)\sqrt{{{a}^{2}}-{{b}^{2}}}}{\left( {{a}^{2}}-{{b}^{2}} \right)} \\\ & \Rightarrow \sqrt{{{a}^{2}}-{{b}^{2}}} \\\ \end{aligned}
Therefore, the minimum value of asecθbtanθ θ(0,π2)a\sec \theta -b\tan \theta \ \forall \theta \in \left( 0,\dfrac{\pi }{2} \right) is a2b2\sqrt{{{a}^{2}}-{{b}^{2}}}
Hence, option (a) is the correct option.

Note : Derivation of any expression yields extreme values of the expression. It can be minimum or maximum or sometimes we can get both, if we can factorise the derived expression. In the case we get two values of the variable, we need to substitute the variables one by one to get maximum and minimum.