Question
Question: If a \> b \> 0 and f(q) = \(\frac { \left( a ^ { 2 } - b ^ { 2 } \right) \cos \theta } { a - b \sin...
If a > b > 0 and f(q) = a−bsinθ(a2−b2)cosθ , then the maximum value of f(q) is –
A

B
a2−b2
C
a – b
D
) a + b
Answer
a2−b2
Explanation
Solution
f(q) = a−bsinθ(a2−b2)cosθ = asecθ−btanθa2−b2
f(q) = h(θ)a2−b2 , where h(q) = a sec q – b tan q
f(q) = depends on hq
h(q) = a sec q – b tan q
h'(q) = a sec q tan q – b sec2q
for max. and min. of h(q), h'(q) = 0
sec q [a tan q – b sec q] = 0
sin q = b/a as sec q ¹ 0
h''(q) = sec q tan q (a tan q – b sec q)
+ (a sec2 q – b sec q tan q) sec q
= a sec3 q + a sec q tan2 q – 2b sec2 q tan q
h''q = cos3θa+asin2θ−2bsinθ {sinθ=b/aa>b>0
= cos3θa+aa2b2−2bab Ž acos2θa2−b2 > 0
h(q) is min. when sinq = b/a
\ f(q) is max. when sin q = b/a
max. f(q) = a−b(ab)(a2−b2)aa2−b2
= (a2−b2)(a2−b2)a2−b2
f(q) = a2−b2