Solveeit Logo

Question

Question: If A and B be acute positive angles satisfying <img src="https://cdn.pureessence.tech/canvas_42.png...

If A and B be acute positive angles satisfying

3sin2A2sin2B=03 \sin 2 A - 2 \sin 2 B = 0 then

A
B
C
D
Answer
Explanation

Solution

From the given relations we have

Sin2B = (32)sin2 A\left( \frac { 3 } { 2 } \right) \sin 2 \mathrm {~A}

and

so that tan2 B=(32)sin2 A3sin2 A=cotA\tan 2 \mathrm {~B} = \frac { \left( \frac { 3 } { 2 } \right) \sin 2 \mathrm {~A} } { 3 \sin ^ { 2 } \mathrm {~A} } = \cot \mathrm { A } or 1- tan2BtanA =0

⇒ A+2B = π2\frac { \pi } { 2 }