Solveeit Logo

Question

Question: If **a** and **b** are two vectors, then \((\mathbf{a} \times \mathbf{b})^{2}\) equals...

If a and b are two vectors, then (a×b)2(\mathbf{a} \times \mathbf{b})^{2} equals

A

a.ba.ab.bb.a\left| \begin{matrix} \mathbf{a}.\mathbf{b} & \mathbf{a}.\mathbf{a} \\ \mathbf{b}.\mathbf{b} & \mathbf{b}.\mathbf{a} \end{matrix} \right|

B

a.aa.bb.ab.b\left| \begin{matrix} \mathbf{a}.\mathbf{a} & \mathbf{a}.\mathbf{b} \\ \mathbf{b}.\mathbf{a} & \mathbf{b}.\mathbf{b} \end{matrix} \right|

C

a.bb.a\left| \begin{matrix} \mathbf{a}.\mathbf{b} \\ \mathbf{b}.\mathbf{a} \end{matrix} \right|

D

None of these

Answer

a.aa.bb.ab.b\left| \begin{matrix} \mathbf{a}.\mathbf{a} & \mathbf{a}.\mathbf{b} \\ \mathbf{b}.\mathbf{a} & \mathbf{b}.\mathbf{b} \end{matrix} \right|

Explanation

Solution

(a×b)2=a2b2(a.b)2=a.aa.ba.bb.b.(\mathbf{a} \times \mathbf{b})^{2} = a^{2}b^{2} - (\mathbf{a}.\mathbf{b})^{2} = \left| \begin{matrix} \mathbf{a}.\mathbf{a} & \mathbf{a}.\mathbf{b} \\ \mathbf{a}.\mathbf{b} & \mathbf{b}.\mathbf{b} \end{matrix} \right|.