Solveeit Logo

Question

Question: If \(A\) and \(B\) are two subsets \(X\) then \(\left( A\bigcap \left( X-B \right) \right)\bigcup B=...

If AA and BB are two subsets XX then (A(XB))B=\left( A\bigcap \left( X-B \right) \right)\bigcup B= $$$$
A.A\bigcup B$$$$$ B.A\bigcap B C.$A
D. BB$$$$

Explanation

Solution

We recall the definition of union xA or xBxABx\in A\text{ or }x\in B\Rightarrow x\in A\bigcup B, intersection xA and xBxABx\in A\text{ and }x\in B\Rightarrow x\in A\bigcap B, compliments xAcxX and xAx\in {{A}^{c}}\Rightarrow x\in X\text{ and }x\notin Aand exclusion of sets xABxA and xBx\in A-B\Rightarrow x\in A\text{ and }x\notin B for some arbitrary element xx. We assume x(A(XB))Bx\in \left( A\bigcap \left( X-B \right) \right)\bigcup B and simplify using the definitions.

Complete step-by-step answer:
We know that of an element xx belongs to AA we can write as xAx\in A. If there is another set BB such that xBx\in B then we define the union of sets as
xA or xBxABx\in A\text{ or }x\in B\Rightarrow x\in A\bigcup B
Similarly we define the intersection of sets as,
xA and xBxABx\in A\text{ and }x\in B\Rightarrow x\in A\bigcap B
If XX is a set such that AA and BB are two subsets XX then compliments are defined as Ac=XA,Bc=XB{{A}^{c}}=X-A,{{B}^{c}}=X-B. If we take an arbitrary element xx then we have

& x\in {{A}^{c}}\Rightarrow x\in X\text{ and }x\notin A \\\ & x\in {{B}^{c}}\Rightarrow x\in X\text{ and }x\notin B \\\ \end{aligned}$$ We define the exclusion of set $B$ from $A$ as $$\begin{aligned} & x\in A-B\Rightarrow x\in A\text{ and }x\notin B \\\ & \Rightarrow x\in A-B\Rightarrow x\in A\text{ and }x\in {{B}^{c}} \\\ \end{aligned}$$ We are given in the question the set$\left( A\bigcap \left( X-B \right) \right)\bigcup B$. Let us assume for some arbitrary element $x$ such that, $$x\in \left( A\bigcap \left( X-B \right) \right)\bigcup B$$ We use the definition of union of sets and have $$\Rightarrow x\in A\bigcap \left( X-B \right)\text{ or }x\in B$$ We use the definition of intersection of sets and have $$\Rightarrow x\in A\text{ and }x\in X-B\text{ or }x\in B$$ We use the definition of exclusion and have; $$\begin{aligned} & \Rightarrow x\in A\text{ and }x\in {{B}^{c}}\text{ or }x\in B \\\ & \Rightarrow x\in A-B\text{ or }x\in B \\\ & \Rightarrow x\in A\bigcup B \\\ \end{aligned}$$ So the correct option is A. We can verify the result using Venn diagrams. We represent the set $X$ as a rectangle and the sets $A,B$ as intersecting circles. We shade the region in blue excluding circle B to represent $X-B$.$$$$ ![](https://www.vedantu.com/question-sets/ec9e4ff6-2786-4c37-84c8-cf59a5941365530312516459769850.png) We take its intersection with circle $A$ to find shade the common region to represent $A\bigcap \left( X-B \right)$.$$$$ ![](https://www.vedantu.com/question-sets/f59520f9-bc72-4acc-9deb-078d184cfba3350180242105885229.png) We take the union of $A\bigcap \left( X-B \right)$ and add up the region of circle $B$ and shade the region to represent $\left( A\bigcap \left( X-B \right) \right)\bigcup B$ .$$$$ ![](https://www.vedantu.com/question-sets/b2bbb336-3c18-4e91-b8bd-a3ccb824c551337270410118068924.png) We know that above shaded region is the region represented by the set $A\bigcup B$. $$$$ **So, the correct answer is “Option A”.** **Note:** We must be careful while shading regions for union and intersection. The word ‘arbitrary’ means any element of our choice. $X$ can also be represented as universal for the sets $A$ and $B$. We note that operations union and intersections are distributive. $$$$