Solveeit Logo

Question

Question: If a and b are two non-zero non-collinear vectors then \[2\left[ {a{\text{ }}b{\text{ i}}} \right]{\...

If a and b are two non-zero non-collinear vectors then 2[a b i]+ 2[a b j]+ 2[a b k]+[a b a]2\left[ {a{\text{ }}b{\text{ i}}} \right]{\text{i }} + {\text{ }}2\left[ {a{\text{ }}b{\text{ j}}} \right]{\text{j }} + {\text{ }}2\left[ {a{\text{ }}b{\text{ k}}} \right]{\text{k }} + \left[ {a{\text{ }}b{\text{ }}a} \right] is equal to ?
(1)\left( 1 \right) 2(a×b)2(a \times b)
(2)\left( 2 \right) a×ba \times b
(3)\left( 3 \right) a+ba + b
(4)\left( 4 \right) None of these

Explanation

Solution

We have to find the value of the given expression of the vector quantities . We solve this question using the concept of cross - product of two vectors . We should also have the knowledge of non - collinear vectors and their properties . We should also have the knowledge of the concept of the scalar triple product of vectors . We should also have the idea of the dot product and cross product of two vectors . Using these properties and expanding the given vector expression , we find the required relation .

Complete answer:
Given :
We have to find the value of 2[a b i]+ 2[a b j]+ 2[a b k]+[a b a](1)2\left[ {a{\text{ }}b{\text{ i}}} \right]{\text{i }} + {\text{ }}2\left[ {a{\text{ }}b{\text{ }}j} \right]{\text{j }} + {\text{ }}2\left[ {a{\text{ }}b{\text{ k}}} \right]{\text{k }} + \left[ {a{\text{ }}b{\text{ }}a} \right] - - - - (1)
Let us assume that two vectors aa and bb be such that a = x1i + y1j + z1ka{\text{ }} = {\text{ }}{x_1}i{\text{ }} + {\text{ }}{y_1}j{\text{ }} + {\text{ }}{z_1}k and b = x2i + y2+ z2kb{\text{ }} = {\text{ }}{x_2}i{\text{ }} + {\text{ }}{y_2}{\text{j }} + {\text{ }}{z_2}k .
Now , using the method of cross product of two vectors , we get
a \times b = \left| {{\text{ }}\begin{array}{*{20}{c}} i&j;&k; \\\ {{x_1}}&{{y_1}}&{{z_1}} \\\ {{x_2}}&{{y_2}}&{{z_2}} \end{array}} \right|
On solving the determinant we obtain a vector equation , as
a×b=(y1z2y2z1)i(x1z2x2z1)j+(x1y2x2y1)ka \times b = ({y_1}{z_2} - {y_2}{z_1})i - ({x_1}{z_2} - {x_2}{z_1})j + ({x_1}{y_2} - {x_2}{y_1})k
We also know that i.i=j.j=k.k=1i.i = j.j = k.k = 1 and i.j=j.k=k.i=0i.j = j.k = k.i = 0
Taking the dot product of the vector a×ba \times b with each vector ii, jj, kk separately , we get
(a×b).i=(y1z2y2z1)i.i(x1z2x2z1)j.i+(x1y2x2y1)k.i(a \times b).i = ({y_1}{z_2} - {y_2}{z_1})i.i - ({x_1}{z_2} - {x_2}{z_1})j.i + ({x_1}{y_2} - {x_2}{y_1})k.i
(a×b).i=(y1z2y2z1)(2)(a \times b).i = ({y_1}{z_2} - {y_2}{z_1}) - - - - - (2)
(a×b).j=(y1z2y2z1)i.j(x1z2x2z1)j.j+(x1y2x2y1)k.j(a \times b).j = ({y_1}{z_2} - {y_2}{z_1})i.j - ({x_1}{z_2} - {x_2}{z_1})j.j + ({x_1}{y_2} - {x_2}{y_1})k.j
(a×b).j=(x1z2x2z1)(3)(a \times b).j = - ({x_1}{z_2} - {x_2}{z_1}) - - - - - (3)
(a×b).k=(y1z2y2z1)i.k(x1z2x2z1)j.k+(x1y2x2y1)k.k(a \times b).k = ({y_1}{z_2} - {y_2}{z_1})i.k - ({x_1}{z_2} - {x_2}{z_1})j.k + ({x_1}{y_2} - {x_2}{y_1})k.k
(a×b).k=(x1y2x2y1)(4)(a \times b).k = ({x_1}{y_2} - {x_2}{y_1}) - - - - - (4)
Now , we also know that scalar triple product of vectors is represents as below :
[a b c] = (a×b).c = a.(b×c) = (a×c).b\left[ {a{\text{ }}b{\text{ }}c} \right]{\text{ }} = {\text{ }}\left( {a \times b} \right).c{\text{ }} = {\text{ }}a.\left( {b \times c} \right){\text{ }} = {\text{ }}\left( {a \times c} \right).b
So , using the concept of scalar triple product of vectors the equations (2), (3) and (4) can be written as :
(a×b).i = [a b i]\left( {a \times b} \right).i{\text{ }} = {\text{ }}\left[ {a{\text{ }}b{\text{ }}i} \right]
(a×b).j = [a b j]\left( {a \times b} \right).j{\text{ }} = {\text{ }}\left[ {a{\text{ }}b{\text{ }}j} \right]
(a×b).k = [a b k]\left( {a \times b} \right).k{\text{ }} = {\text{ }}\left[ {a{\text{ }}b{\text{ }}k} \right]
Now , substituting the values of equations (2) , (3) and (4) in equation (1) , we get
2[a b i]i + 2[a b j]j + 2[a b k]k +[a b a]=2(y1z2y2z1)2(x1z2x2z1)+2(x1y2x2y1)  + [a b a](5)2\left[ {a{\text{ }}b{\text{ }}i} \right]i{\text{ }} + {\text{ }}2\left[ {a{\text{ }}b{\text{ }}j} \right]j{\text{ }} + {\text{ }}2\left[ {a{\text{ }}b{\text{ }}k} \right]k{\text{ }} + \left[ {a{\text{ }}b{\text{ }}a} \right] = 2({y_1}{z_2} - {y_2}{z_1}) - 2({x_1}{z_2} - {x_2}{z_1}) + 2({x_1}{y_2} - {x_2}{y_1})\; + {\text{ }}\left[ {a{\text{ }}b{\text{ }}a} \right] - - - (5)
Now , we have to get the value of [a b a] . As we stated above the expansion of a scalar triple product of a vector , we get
[a b a] = (a×a).b\left[ {a{\text{ }}b{\text{ }}a} \right]{\text{ }} = {\text{ }}\left( {a \times a} \right).b
Also , we know that cross product of two same vectors is always zero .
Hence , we get the value of [a b a]\left[ {a{\text{ }}b{\text{ }}a} \right]
[a b a]=0\left[ {a{\text{ }}b{\text{ }}a} \right] = 0
Substituting the value of [a b a]\left[ {a{\text{ }}b{\text{ }}a} \right] in equation (5)(5) , we get
2[a b i]i + 2[a b j]j + 2[a b k]k +[a b a]=2(y1z2y2z1)2(x1z2x2z1)+2(x1y2x2y1)  2\left[ {a{\text{ }}b{\text{ }}i} \right]i{\text{ }} + {\text{ }}2\left[ {a{\text{ }}b{\text{ }}j} \right]j{\text{ }} + {\text{ }}2\left[ {a{\text{ }}b{\text{ }}k} \right]k{\text{ }} + \left[ {a{\text{ }}b{\text{ }}a} \right] = 2({y_1}{z_2} - {y_2}{z_1}) - 2({x_1}{z_2} - {x_2}{z_1}) + 2({x_1}{y_2} - {x_2}{y_1})\;
Taking 2 common from the R.H.S. , we get
2[a b i]i + 2[a b j]+ 2[a b k]k +[a b a]=2[(y1z2y2z1)(x1z2x2z1)+(x1y2x2y1)  ](6)2\left[ {a{\text{ }}b{\text{ }}i} \right]i{\text{ }} + {\text{ }}2\left[ {a{\text{ }}b{\text{ }}j} \right]{\text{j }} + {\text{ }}2\left[ {a{\text{ }}b{\text{ k}}} \right]k{\text{ }} + \left[ {a{\text{ }}b{\text{ }}a} \right] = 2\left[ {({y_1}{z_2} - {y_2}{z_1}) - ({x_1}{z_2} - {x_2}{z_1}) + ({x_1}{y_2} - {x_2}{y_1})\;} \right] - - - (6)
Also , we know that as solved above the cross product of the two vectors is given as :
a×b=(y1z2y2z1)i(x1z2x2z1)j+(x1y2x2y1)ka \times b = ({y_1}{z_2} - {y_2}{z_1})i - ({x_1}{z_2} - {x_2}{z_1})j + ({x_1}{y_2} - {x_2}{y_1})k
So , equation (6) becomes
2[a b i]i + 2[a b j]j + 2[a b k]k +[a b a]=2(a×b)2\left[ {a{\text{ }}b{\text{ }}i} \right]i{\text{ }} + {\text{ }}2\left[ {a{\text{ }}b{\text{ }}j} \right]j{\text{ }} + {\text{ }}2\left[ {a{\text{ }}b{\text{ }}k} \right]k{\text{ }} + \left[ {a{\text{ }}b{\text{ }}a} \right] = 2(a \times b)
Thus , the value of the given expression of vectors is 2(a×b)2(a \times b) .
Hence , the correct option is (1)\left( 1 \right) .

Note:
Cross product of two vectors a = x1i + y1j + z1ka{\text{ }} = {\text{ }}{x_1}i{\text{ }} + {\text{ }}{y_1}j{\text{ }} + {\text{ }}{z_1}k , b = x2i + y2+ z2kb{\text{ }} = {\text{ }}{x_2}i{\text{ }} + {\text{ }}{y_2}{\text{j }} + {\text{ }}{z_2}k is given by solving the determinant

i&j;&k; \\\ {{x_1}}&{{y_1}}&{{z_1}} \\\ {{x_2}}&{{y_2}}&{{z_2}} \end{array}} \right|$$ $ = \left( {{y_1}{z_2} - {y_2}{z_1}} \right)i - \left( {{x_1}{z_2} - {x_2}{z_1}} \right)j + \left( {{x_1}{y_2} - {y_2}{x_1}} \right)k$ Dot product of two vectors : let $$a{\text{ }} = {\text{ }}{x_1}i{\text{ }} + {\text{ }}{y_1}j{\text{ }} + {\text{ }}{z_1}k$$ , $$b{\text{ }} = {\text{ }}{x_2}i{\text{ }} + {\text{ }}{y_2}{\text{j }} + {\text{ }}{z_2}k$$ is given as $$a.b = ({x_1}i{\text{ }} + {\text{ }}{y_1}j{\text{ }} + {\text{ }}{z_1}k{\text{) }}{\text{. (}}{x_2}i{\text{ }} + {\text{ }}{y_2}j + {\text{ }}{z_2}k)$$ $$a.b = ({x_1}{x_2}{\text{ }} + {\text{ }}{y_1}{y_2}{\text{ }} + {\text{ }}{z_1}{z_2})$$ The product $$i.i = j.j = k.k = 1$$ Two vectors are said to be collinear if the cross product of the two vectors results in a zero vector and one vector can be written as multiple another vector.