Solveeit Logo

Question

Question: If A and B are two mutually exclusive events, then (a) \(P\left( A \right)\le P\left( \overline{B}...

If A and B are two mutually exclusive events, then
(a) P(A)P(B)P\left( A \right)\le P\left( \overline{B} \right)
(b) P(AB)=P(A)P(B)P\left( \overline{A}\cap \overline{B} \right)=P\left( \overline{A} \right)-P\left( B \right)
(c) P(AB)=0P\left( \overline{A}\cup \overline{B} \right)=0
(d) P(AB)=P(B)P\left( \overline{A}\cap B \right)=P\left( B \right)

Explanation

Solution

We have to verify each option. For mutually exclusive events, A and B, we know that P(AB)=0P\left( A\cap B \right)=0 . We have to use P(AB)1P\left( A\cup B \right)\le 1 to verify option a. To verify option b, we will be using P(AB)=P(AB)=1P(AB)P\left( \overline{A}\cap \overline{B} \right)=P\left( \overline{A\cup B} \right)=1-P\left( A\cup B \right) . We have to use P(AB)=P(AB)=1P(AB)P\left( \overline{A}\cup \overline{B} \right)=P\left( \overline{A\cap B} \right)=1-P\left( A\cap B \right) to verify option c . We have to apply the probability formulas including P(AB)=P(A)+P(B)P(AB)P\left( A\cup B \right)=P\left( A \right)+P\left( B \right)-P\left( A\cap B \right) , P(AB)=P(A)+P(B)P(AB)P\left( A\cap B \right)=P\left( A \right)+P\left( B \right)-P\left( A\cup B \right) , P(A)=1P(A)P\left( \overline{A} \right)=1-P\left( A \right) , P(B)=1P(B)P\left( \overline{B} \right)=1-P\left( B \right) and P(AB)=P(A)P\left( \overline{A}\cup B \right)=P\left( \overline{A} \right) . Using these forms, we can verify option d.

Complete step by step solution:
We have to choose the correct options when A and B are mutually exclusive. We have to verify each option. Let us first verify the first option.
We know that P(AB)1P\left( A\cup B \right)\le 1
We also know that P(AB)=P(A)+P(B)P(AB)...(i)P\left( A\cup B \right)=P\left( A \right)+P\left( B \right)-P\left( A\cap B \right)...\left( i \right) . Let us substitute this in the above equation.
P(A)+P(B)P(AB)1...(ii)\Rightarrow P\left( A \right)+P\left( B \right)-P\left( A\cap B \right)\le 1...\left( ii \right)
We know that when two events, say, A and B are mutually exclusive, then the probability of occurrence of both A and B will be 0.
P(AB)=0...(iii)\Rightarrow P\left( A\cap B \right)=0...\left( iii \right)
Let us substitute this in equation (ii).
P(A)+P(B)01 P(A)+P(B)1 \begin{aligned} & \Rightarrow P\left( A \right)+P\left( B \right)-0\le 1 \\\ & \Rightarrow P\left( A \right)+P\left( B \right)\le 1 \\\ \end{aligned}
Let us take P(B) to the RHS.
P(A)1P(B)\Rightarrow P\left( A \right)\le 1-P\left( B \right)
We know that P(B)=1P(B)P\left( \overline{B} \right)=1-P\left( B \right) . Therefore, the above equation becomes
P(A)P(B)\Rightarrow P\left( A \right)\le P\left( \overline{B} \right)
Hence, option (a) is satisfied.
Now, let us verify the second option.
We know that P(AB)=P(AB)=1P(AB)P\left( \overline{A}\cap \overline{B} \right)=P\left( \overline{A\cup B} \right)=1-P\left( A\cup B \right)
P(AB)=1P(AB)\Rightarrow P\left( \overline{A}\cap \overline{B} \right)=1-P\left( A\cup B \right)
Let us substitute equation (i) in the above equation.
P(AB)=1[P(A)+P(B)P(AB)]\Rightarrow P\left( \overline{A}\cap \overline{B} \right)=1-\left[ P\left( A \right)+P\left( B \right)-P\left( A\cap B \right) \right]
Using (iii), we can write the above equation as
P(AB)=1[P(A)+P(B)0] P(AB)=1[P(A)+P(B)] \begin{aligned} & \Rightarrow P\left( \overline{A}\cap \overline{B} \right)=1-\left[ P\left( A \right)+P\left( B \right)-0 \right] \\\ & \Rightarrow P\left( \overline{A}\cap \overline{B} \right)=1-\left[ P\left( A \right)+P\left( B \right) \right] \\\ \end{aligned}
Let us expand the RHS.
P(AB)=1P(A)P(B)\Rightarrow P\left( \overline{A}\cap \overline{B} \right)=1-P\left( A \right)-P\left( B \right)
We know that P(A)=1P(A)P\left( \overline{A} \right)=1-P\left( A \right) . Let us substitute this in the above equation.
P(AB)=P(A)P(B)\Rightarrow P\left( \overline{A}\cap \overline{B} \right)=P\left( \overline{A} \right)-P\left( B \right)
We can see that option b is verified.
Let us check option c.
We know that P(AB)=P(AB)=1P(AB)P\left( \overline{A}\cup \overline{B} \right)=P\left( \overline{A\cap B} \right)=1-P\left( A\cap B \right) .
Let us substitute (iii) in the above formula.
P(AB)=10 P(AB)=1 \begin{aligned} & \Rightarrow P\left( \overline{A}\cup \overline{B} \right)=1-0 \\\ & \Rightarrow P\left( \overline{A}\cup \overline{B} \right)=1 \\\ \end{aligned}
Therefore, option c is incorrect.
Let us verify option d.
We can write P(AB)P\left( \overline{A}\cap B \right) as
P(AB)=P(A)+P(B)P(AB)...(iv)\Rightarrow P\left( \overline{A}\cap B \right)=P\left( \overline{A} \right)+P\left( B \right)-P\left( \overline{A}\cup B \right)...\left( iv \right)
We can write P(AB)=P(A)P\left( \overline{A}\cup B \right)=P\left( \overline{A} \right) .
Let us substitute this in equation (iv).
P(AB)=P(A)+P(B)P(A)\Rightarrow P\left( \overline{A}\cap B \right)=P\left( \overline{A} \right)+P\left( B \right)-P\left( \overline{A} \right)
Let us solve the RHS.
P(AB)=P(B)\Rightarrow P\left( \overline{A}\cap B \right)=P\left( B \right)
Hence, option d is verified.

Hence, the correct options are (a),(b) and (d).

Note: Students must know the probability formulas to solve these questions. We can also solve this problem using a Venn diagram.

In the above figure, P(A) is shown in red colour and P(B)P\left( \overline{B} \right) is shown in yellow colour including the shaded portion in A. We can see that P(A)P(B)P\left( A \right)\le P\left( \overline{B} \right) . Hence option a is correct.
Let us check P(AB)=P(A)P(B)P\left( \overline{A}\cap \overline{B} \right)=P\left( \overline{A} \right)-P\left( B \right) .

The green colour is P(B) and P(A)P\left( \overline{A} \right) is the violet colour including the shaded portion in B. P(AB)P\left( \overline{A}\cap \overline{B} \right) is the violet colour and P(AB)P\left( A\cap B \right) is the green part only (without shades) . Thus, when we subtract P(B) and P(AB)P\left( A\cap B \right) from P(A)P\left( \overline{A} \right) , we will get P(AB)P\left( \overline{A}\cap \overline{B} \right) since P(AB)=0P\left( A\cap B \right)=0 .
Hence, option b is correct.
Let us check P(AB)=0P\left( \overline{A}\cup \overline{B} \right)=0 .

P(A)P\left( \overline{A} \right) is the violet colour including the shaded portion in B. P(B)P\left( \overline{B} \right) is the violet portion including the blue shaded portion in A. We will get P(AB)=1P(AB)=10=1P\left( \overline{A}\cup \overline{B} \right)=1-P\left( A\cap B \right)=1-0=1
Hence, option c is incorrect.
Let us check the option P(AB)=P(B)P\left( \overline{A}\cap B \right)=P\left( B \right) .
We can see that the intersection of A\overline{A} and B is P(B)P(AB)=P(B)0=P(B)P\left( B \right)-P\left( A\cap B \right)=P\left( B \right)-0=P\left( B \right) .
Hence, option d is correct.