Solveeit Logo

Question

Mathematics Question on Probability

If A and B are two independent events such that P(A)>0,P(A) > 0, and P(B)1P(B)\ne 1, then P(A/B)P(\overline{A}/ \overline{B}) is equal to

A

1P(A/B)1 - P(A / B)

B

1P(A/B)1 - P(A / \overline{B})

C

1P(AB)p(B)\frac{1-P(A \cup B)}{p(B)}

D

P(A)P(B)\frac{P(\overline{A})}{P(\overline{B})}

Answer

1P(A/B)1 - P(A / \overline{B})

Explanation

Solution

Since,P(A/B)+P(A/B)P(A / \overline{B}) + P(\overline{A} / \overline{B})= 1
P(A/B)=1P(A/B)\therefore \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, P(\overline{A}/\overline{B})=1-P(A / \overline{B})