Solveeit Logo

Question

Question: If A and B are two independent events such that <img src="https://cdn.pureessence.tech/canvas_173.p...

If A and B are two independent events such that

then

A

P(AB)=12P \left( \frac { A } { B } \right) = \frac { 1 } { 2 }

B

P(AAB)=56P \left( \frac { A } { A \cup B } \right) = \frac { 5 } { 6 }

C

P(ABAB)=0P \left( \frac { A \cap B } { A ^ { \prime } \cup B ^ { \prime } } \right) = 0

D

All of the above

Answer

All of the above

Explanation

Solution

P(A/B)=P(A)P ( A / B ) = P ( A ) as independent event

P{A/(AB)}=P[A(AB)]P(AB)P \{ A / ( A \cup B ) \} = \frac { P [ A \cap ( A \cup B ) ] } { P ( A \cup B ) }

{Since A(AB)=A[ABAB]A \cap ( A \cup B ) = A \cap [ A - B - A \cap B ]

=AABAB=a}= A - A \cap B - A \cap B = a \}

P(AAB)=P(A)P(AB)=121215110=12610=56\Rightarrow P \left( \frac { A } { A \cup B } \right) = \frac { P ( A ) } { P ( A \cup B ) } = \frac { \frac { 1 } { 2 } } { \frac { 1 } { 2 } - \frac { 1 } { 5 } - \frac { 1 } { 10 } } = \frac { \frac { 1 } { 2 } } { \frac { 6 } { 10 } } = \frac { 5 } { 6 }

and similarly P(ABAB)P \left( \frac { A \cap B } { A ^ { \prime } \cup B ^ { \prime } } \right) .