Solveeit Logo

Question

Question: If A and B are two fixed points and P is a variable point such that PA + PB = 4, the locus of P is...

If A and B are two fixed points and P is a variable point such that PA + PB = 4, the locus of P is

A

A parabola

B

An ellipse

C

A hyperbola

D

None of these

Answer

An ellipse

Explanation

Solution

PA+PB=4\because \mathrm { PA } + \mathrm { PB } = 4

(hfbgabh2,ghafabh2)\left( \frac { h f - b g } { a b - h ^ { 2 } } , \frac { g h - a f } { a b - h ^ { 2 } } \right).(1)

Let (x+a)2+y2=l( x + a ) ^ { 2 } + y ^ { 2 } = l & (xa)2+y2=m( x - a ) ^ { 2 } + y ^ { 2 } = m

from (1)

l+m=4\sqrt { l } + \sqrt { m } = 4 .........(2)

(l+m)(lm)=4ax( \sqrt { l } + \sqrt { m } ) ( \sqrt { l } - \sqrt { m } ) = 4 a x ......(3)

lm=ax\sqrt { l } - \sqrt { m } = a x ………….(4) (from (2))

adding (2) & (4) 2l=(4+ax)\therefore 2 \sqrt { l } = ( 4 + a x )

4l=16+a2x2+8ax4 l = 16 + a ^ { 2 } x ^ { 2 } + 8 a x

4{x2+y2+2ax+a2]=16+a2x2+8ax4 \left\{ x ^ { 2 } + y ^ { 2 } + 2 a x + a ^ { 2 } \right] = 16 + a ^ { 2 } x ^ { 2 } + 8 a x(4a2)x2+4y2=164a2\left( 4 - a ^ { 2 } \right) x ^ { 2 } + 4 y ^ { 2 } = 16 - 4 a ^ { 2 } ellipse.