Solveeit Logo

Question

Mathematics Question on Integration by Partial Fractions

If A and B are two events such that P(A)=13,P(B)=15P(A)=\frac1{3},P(B)=\frac1{5} and P(AB)=12P(A∪B)=\frac1{2} then P(AB)+P(BA)P(\frac{A}{B'}) + P(\frac{B}{A'}) is equal to

A

34\frac{3}4

B

58\frac{5}8

C

54\frac{5}4

D

78\frac{7}8

Answer

58\frac{5}8

Explanation

Solution

P(A)=13,P(B)=15P(A)=\frac1{3},P(B)=\frac1{5} and P(AB)=12P(A∪B)=\frac1{2}

P(AB)=13+1512=130P(A∩B)=\frac1{3}+\frac1{5}-\frac1{2}=\frac1{30 }

Now,
P(AB)+P(BA)=P(\frac{A}{B'})+P(\frac{B}{A'}) = P(AB)P(B)+P(BA)P(A)\frac{P(A∩B')}{P(B')}+\frac{P(B∩A')}{P(A')}

=93045\-53023=\frac{\frac9{30}}{\frac{4}{5}} \- \frac{\frac5{30}}{\frac2{3}}

=58=\frac5{8}