Solveeit Logo

Question

Question: If **a** and **b** are the position vectors of A and B respectively, then the position vector of a p...

If a and b are the position vectors of A and B respectively, then the position vector of a point C on AB produced such that AC=3AB\overset{\rightarrow}{AC} = 3\overset{\rightarrow}{AB} is

A

3ab3\mathbf{a} - \mathbf{b}

B

3ba3\mathbf{b} - \mathbf{a}

C

3a2b3\mathbf{a} - 2\mathbf{b}

D

3b2a3\mathbf{b} - 2\mathbf{a}

Answer

3b2a3\mathbf{b} - 2\mathbf{a}

Explanation

Solution

Since given that AC=3AB.\overset{\rightarrow}{AC} = 3\overset{\rightarrow}{AB}. It means that point CC divides ABAB externally. Thus AC:BC=3:2\overset{\rightarrow}{AC}:\overset{\rightarrow}{BC} = 3:2

Hence OC=3.b2.a32=3b2a.\overset{\rightarrow}{OC} = \frac{3.\mathbf{b} - 2.\mathbf{a}}{3 - 2} = 3\mathbf{b} - 2\mathbf{a}.