Solveeit Logo

Question

Question: If a and b are the eccentric angles of extremities of a focal chord of an ellipse, then the eccentri...

If a and b are the eccentric angles of extremities of a focal chord of an ellipse, then the eccentricity of the ellipse is –

A

cosα+cosβcos(α+β)\frac{\cos\alpha + \cos\beta}{\cos(\alpha + \beta)}

B

sinαsinβsin(αβ)\frac{\sin\alpha –\sin\beta}{\sin(\alpha –\beta)}

C

cosαcosβcos(αβ)\frac{\cos\alpha –\cos\beta}{\cos(\alpha –\beta)}

D

sinα+sinβsin(α+β)\frac{\sin\alpha + \sin\beta}{\sin(\alpha + \beta)}

Answer

sinα+sinβsin(α+β)\frac{\sin\alpha + \sin\beta}{\sin(\alpha + \beta)}

Explanation

Solution

Equation of chord be

xa\frac{x}{a}cos α+β2\frac{\alpha + \beta}{2} + yb\frac{y}{b}sinα+β2\frac{\alpha + \beta}{2} = cosαβ2\frac{\alpha –\beta}{2}

since it passes through (ae, 0)

so e cos α+β2\frac{\alpha + \beta}{2} = cosαβ2\frac{\alpha –\beta}{2}

e = cosαβ2cosα+β2\frac{\cos\frac{\alpha –\beta}{2}}{\cos\frac{\alpha + \beta}{2}} = 2cosαβ2sinα+β2sin(α+β)\frac{2\cos\frac{\alpha –\beta}{2}\sin\frac{\alpha + \beta}{2}}{\sin(\alpha + \beta)}

e = sinα+sinβsin(α+β)\frac{\sin\alpha + \sin\beta}{\sin(\alpha + \beta)}