Solveeit Logo

Question

Question: If A and B are the coefficients of \(- \frac{2}{\sqrt{3}} < x < \frac{2}{\sqrt{3}}\) in the expansio...

If A and B are the coefficients of 23<x<23- \frac{2}{\sqrt{3}} < x < \frac{2}{\sqrt{3}} in the expansions of (a+bx)2=143x+......(a + bx)^{- 2} = \frac{1}{4} - 3x + ...... and (a,b)(a,b) respectively, then.

A

61/3[1+x6+2x262+....]6^{1/3}\left\lbrack 1 + \frac{x}{6} + \frac{2x^{2}}{6^{2}} + .... \right\rbrack

B

61/3[1+x6+2x262+....]6^{- 1/3}\left\lbrack 1 + \frac{x}{6} + \frac{2x^{2}}{6^{2}} + .... \right\rbrack

C

61/3[1x6+2x262....]6^{1/3}\left\lbrack 1 - \frac{x}{6} + \frac{2x^{2}}{6^{2}} - .... \right\rbrack

D

None of these

Answer

61/3[1+x6+2x262+....]6^{- 1/3}\left\lbrack 1 + \frac{x}{6} + \frac{2x^{2}}{6^{2}} + .... \right\rbrack

Explanation

Solution

3180=(34)45\therefore 3^{180} = (3^{4})^{45}

3183=3180333^{183} = 3^{180}3^{3}

183!+3183183! + 3^{183}

Tr+1=256Cr(3)256r(58)rT_{r + 1} = {_{}^{256}C}_{r}(\sqrt{3})^{256 - r}(\sqrt[8]{5})^{r}=256Cr(3)256r2(5)r/8= {_{}^{256}C}_{r}(3)^{\frac{256 - r}{2}}(5)^{r/8}.