Question
Question: If \[A\] and \[B\] are symmetric matrices, then \[ABA\] is (a) Symmetric (b) Skew-symmetric ...
If A and B are symmetric matrices, then ABA is
(a) Symmetric
(b) Skew-symmetric
(c) Diagonal
(d) Triangular
Solution
Here, we need to find the type of matrix ABA. We will use the given information to find the transpose of the matrix ABA, and using that, we will determine the type of matrix ABA.
Formula Used:
We will use the formula of the transpose of two matrices X and Y can be written as (XY)T=YTXT.
Complete step by step solution:
A symmetric matrix is a matrix whose transpose is equal to the matrix.
The transpose of a matrix A is denoted by AT.
Thus, if A is a symmetric matrix, then A=AT.
It is given that A and B are symmetric matrices.
Therefore, we get
A=AT and B=BT
Now, we will find the transpose of the matrix ABA.
The transpose of the matrix ABA is given by (ABA)T.
The transpose of two matrices X and Y can be written as (XY)T=YTXT.
Therefore, we get
⇒(ABA)T=ATBTAT
Substituting AT=A and BT=B in the equation, we get
⇒(ABA)T=ABA
We can observe that the transpose of the matrix ABA is equal to the matrix ABA.
Therefore, the matrix ABA is a symmetric matrix.
Thus, the correct option is option (a).
Note:
We can verify our solution by taking any two symmetric matrices.
Let A = \left[ {\begin{array}{*{20}{l}}2&0&1\\\0&3&2\\\1&2&4\end{array}} \right] and B = \left[ {\begin{array}{*{20}{l}}1&2&1\\\2&2&3\\\1&3&5\end{array}} \right].
We will check whether (ABA)T=ABA.
Multiplying the matrices A and B, we get
\begin{array}{l} \Rightarrow AB = \left[ {\begin{array}{*{20}{l}}2&0&1\\\0&3&2\\\1&2&4\end{array}} \right]\left[ {\begin{array}{*{20}{l}}1&2&1\\\2&2&3\\\1&3&5\end{array}} \right]\\\ \Rightarrow AB = \left[ {\begin{array}{*{20}{l}}{2 \times 1 + 0 \times 2 + 1 \times 1}&{2 \times 2 + 0 \times 2 + 1 \times 3}&{2 \times 1 + 0 \times 3 + 1 \times 5}\\\\{0 \times 1 + 3 \times 2 + 2 \times 1}&{0 \times 2 + 3 \times 2 + 2 \times 3}&{0 \times 1 + 3 \times 3 + 2 \times 5}\\\\{1 \times 1 + 2 \times 2 + 4 \times 1}&{1 \times 2 + 2 \times 2 + 4 \times 3}&{1 \times 1 + 2 \times 3 + 4 \times 5}\end{array}} \right]\end{array}
Multiplying the terms in the matrix, we get
\Rightarrow AB = \left[ {\begin{array}{*{20}{l}}{2 + 0 + 1}&{4 + 0 + 3}&{2 + 0 + 5}\\\\{0 + 6 + 2}&{0 + 6 + 6}&{0 + 9 + 10}\\\\{1 + 4 + 4}&{2 + 4 + 12}&{1 + 6 + 20}\end{array}} \right]
Adding the terms in the matrix, we get
\Rightarrow AB = \left[ {\begin{array}{*{20}{l}}3&7&7\\\8&{12}&{19}\\\9&{18}&{27}\end{array}} \right]
Now, we will multiply the matrices AB and A.
Therefore, we get
\begin{array}{l} \Rightarrow ABA = \left[ {\begin{array}{*{20}{l}}3&7&7\\\8&{12}&{19}\\\9&{18}&{27}\end{array}} \right]\left[ {\begin{array}{*{20}{l}}2&0&1\\\0&3&2\\\1&2&4\end{array}} \right]\\\ \Rightarrow ABA = \left[ {\begin{array}{*{20}{l}}{3 \times 2 + 7 \times 0 + 7 \times 1}&{3 \times 0 + 7 \times 3 + 7 \times 2}&{3 \times 1 + 7 \times 2 + 7 \times 4}\\\\{8 \times 2 + 12 \times 0 + 19 \times 1}&{8 \times 0 + 12 \times 3 + 19 \times 2}&{8 \times 1 + 12 \times 2 + 19 \times 4}\\\\{9 \times 2 + 18 \times 0 + 27 \times 1}&{9 \times 0 + 18 \times 3 + 27 \times 2}&{9 \times 1 + 18 \times 2 + 27 \times 4}\end{array}} \right]\end{array}
Multiplying the terms in the matrix, we get
\Rightarrow ABA = \left[ {\begin{array}{*{20}{l}}{6 + 0 + 7}&{0 + 21 + 14}&{3 + 14 + 28}\\\\{16 + 0 + 19}&{0 + 36 + 38}&{8 + 24 + 76}\\\\{18 + 0 + 27}&{0 + 54 + 54}&{9 + 36 + 108}\end{array}} \right]
Adding the terms in the matrix, we get
\Rightarrow ABA = \left[ {\begin{array}{*{20}{l}}{13}&{35}&{45}\\\\{35}&{74}&{108}\\\\{45}&{108}&{153}\end{array}} \right]
Now, we will find the transpose of the matrix ABA.
The transpose of a matrix is formed by interchanging the rows and columns of the matrix.
Therefore, we get
\Rightarrow {\left( {ABA} \right)^T} = \left[ {\begin{array}{*{20}{l}}{13}&{35}&{45}\\\\{35}&{74}&{108}\\\\{45}&{108}&{153}\end{array}} \right]
We can observe that the transpose of the matrix ABA is equal to the matrix ABA.
Hence, we have verified that the matrix ABA is a symmetric matrix.