Solveeit Logo

Question

Question: If \[A\] and \[B\] are symmetric matrices, then \[ABA\] is (a) Symmetric (b) Skew-symmetric ...

If AA and BB are symmetric matrices, then ABAABA is
(a) Symmetric
(b) Skew-symmetric
(c) Diagonal
(d) Triangular

Explanation

Solution

Here, we need to find the type of matrix ABAABA. We will use the given information to find the transpose of the matrix ABAABA, and using that, we will determine the type of matrix ABAABA.

Formula Used:
We will use the formula of the transpose of two matrices XX and YY can be written as (XY)T=YTXT{\left( {XY} \right)^T} = {Y^T}{X^T}.

Complete step by step solution:
A symmetric matrix is a matrix whose transpose is equal to the matrix.
The transpose of a matrix AA is denoted by AT{A^T}.
Thus, if AA is a symmetric matrix, then A=ATA = {A^T}.
It is given that AA and BB are symmetric matrices.
Therefore, we get
A=ATA = {A^T} and B=BTB = {B^T}
Now, we will find the transpose of the matrix ABAABA.
The transpose of the matrix ABAABA is given by (ABA)T{\left( {ABA} \right)^T}.
The transpose of two matrices XX and YY can be written as (XY)T=YTXT{\left( {XY} \right)^T} = {Y^T}{X^T}.
Therefore, we get
(ABA)T=ATBTAT\Rightarrow {\left( {ABA} \right)^T} = {A^T}{B^T}{A^T}
Substituting AT=A{A^T} = A and BT=B{B^T} = B in the equation, we get
(ABA)T=ABA\Rightarrow {\left( {ABA} \right)^T} = ABA
We can observe that the transpose of the matrix ABAABA is equal to the matrix ABAABA.
Therefore, the matrix ABAABA is a symmetric matrix.

Thus, the correct option is option (a).

Note:
We can verify our solution by taking any two symmetric matrices.
Let A = \left[ {\begin{array}{*{20}{l}}2&0&1\\\0&3&2\\\1&2&4\end{array}} \right] and B = \left[ {\begin{array}{*{20}{l}}1&2&1\\\2&2&3\\\1&3&5\end{array}} \right].
We will check whether (ABA)T=ABA{\left( {ABA} \right)^T} = ABA.
Multiplying the matrices A and B, we get
\begin{array}{l} \Rightarrow AB = \left[ {\begin{array}{*{20}{l}}2&0&1\\\0&3&2\\\1&2&4\end{array}} \right]\left[ {\begin{array}{*{20}{l}}1&2&1\\\2&2&3\\\1&3&5\end{array}} \right]\\\ \Rightarrow AB = \left[ {\begin{array}{*{20}{l}}{2 \times 1 + 0 \times 2 + 1 \times 1}&{2 \times 2 + 0 \times 2 + 1 \times 3}&{2 \times 1 + 0 \times 3 + 1 \times 5}\\\\{0 \times 1 + 3 \times 2 + 2 \times 1}&{0 \times 2 + 3 \times 2 + 2 \times 3}&{0 \times 1 + 3 \times 3 + 2 \times 5}\\\\{1 \times 1 + 2 \times 2 + 4 \times 1}&{1 \times 2 + 2 \times 2 + 4 \times 3}&{1 \times 1 + 2 \times 3 + 4 \times 5}\end{array}} \right]\end{array}
Multiplying the terms in the matrix, we get
\Rightarrow AB = \left[ {\begin{array}{*{20}{l}}{2 + 0 + 1}&{4 + 0 + 3}&{2 + 0 + 5}\\\\{0 + 6 + 2}&{0 + 6 + 6}&{0 + 9 + 10}\\\\{1 + 4 + 4}&{2 + 4 + 12}&{1 + 6 + 20}\end{array}} \right]
Adding the terms in the matrix, we get
\Rightarrow AB = \left[ {\begin{array}{*{20}{l}}3&7&7\\\8&{12}&{19}\\\9&{18}&{27}\end{array}} \right]
Now, we will multiply the matrices AB and A.
Therefore, we get
\begin{array}{l} \Rightarrow ABA = \left[ {\begin{array}{*{20}{l}}3&7&7\\\8&{12}&{19}\\\9&{18}&{27}\end{array}} \right]\left[ {\begin{array}{*{20}{l}}2&0&1\\\0&3&2\\\1&2&4\end{array}} \right]\\\ \Rightarrow ABA = \left[ {\begin{array}{*{20}{l}}{3 \times 2 + 7 \times 0 + 7 \times 1}&{3 \times 0 + 7 \times 3 + 7 \times 2}&{3 \times 1 + 7 \times 2 + 7 \times 4}\\\\{8 \times 2 + 12 \times 0 + 19 \times 1}&{8 \times 0 + 12 \times 3 + 19 \times 2}&{8 \times 1 + 12 \times 2 + 19 \times 4}\\\\{9 \times 2 + 18 \times 0 + 27 \times 1}&{9 \times 0 + 18 \times 3 + 27 \times 2}&{9 \times 1 + 18 \times 2 + 27 \times 4}\end{array}} \right]\end{array}
Multiplying the terms in the matrix, we get
\Rightarrow ABA = \left[ {\begin{array}{*{20}{l}}{6 + 0 + 7}&{0 + 21 + 14}&{3 + 14 + 28}\\\\{16 + 0 + 19}&{0 + 36 + 38}&{8 + 24 + 76}\\\\{18 + 0 + 27}&{0 + 54 + 54}&{9 + 36 + 108}\end{array}} \right]
Adding the terms in the matrix, we get
\Rightarrow ABA = \left[ {\begin{array}{*{20}{l}}{13}&{35}&{45}\\\\{35}&{74}&{108}\\\\{45}&{108}&{153}\end{array}} \right]
Now, we will find the transpose of the matrix ABA.
The transpose of a matrix is formed by interchanging the rows and columns of the matrix.
Therefore, we get
\Rightarrow {\left( {ABA} \right)^T} = \left[ {\begin{array}{*{20}{l}}{13}&{35}&{45}\\\\{35}&{74}&{108}\\\\{45}&{108}&{153}\end{array}} \right]
We can observe that the transpose of the matrix ABAABA is equal to the matrix ABAABA.
Hence, we have verified that the matrix ABAABA is a symmetric matrix.