Solveeit Logo

Question

Mathematics Question on Matrices

If AA and BB are symmetric matrices, prove that ABBAAB−BA is a skew symmetric matrix.

Answer

It is given that AA and BB are symmetric matrices. Therefore, we have:
A=AandB=B....(1)A'=A\, and\, B'=B ....(1)
Now (ABBA)=(AB)(BA)[(AB)=AB](AB-BA)'=(AB)'-(BA)'\,\, [(A-B)'=A'-B']
=BAAB=B'A'-A'B'
=BAAB[using(1)]=BA-AB [using(1)]
=(ABBA)=-(AB-BA)
therefore (ABBA)=(ABBA)(AB-BA)'=-(AB-BA)
Thus, (ABBA)(AB − BA) is a skew-symmetric matrix.