Solveeit Logo

Question

Question: If A and B are square matrices of the same order and A is non-singular then for a positive integer n...

If A and B are square matrices of the same order and A is non-singular then for a positive integer n, (A–1BA)n is equals

A

AnBnA–n

B

A–1BnA

C

A–nBnAn

D

n(A–1BA)

Answer

A–1BnA

Explanation

Solution

(A–1 B A)n

=A–1BA.A1\begin{matrix} A.A^{–1} \end{matrix}BA.A1\begin{matrix} A.A^{–1} \end{matrix}BA.A1\begin{matrix} A.A^{–1} \end{matrix}B A...A–1B

A.A1\begin{matrix} A.A^{–1} \end{matrix}B A = A–1BnA