Solveeit Logo

Question

Mathematics Question on Matrices

If AA and BB are square matrices of the same order such that (A+B)(AB)=A2B2(A + B) (A -B) = A^2-B^2 then (ABA1)2=(ABA^{-1} )^2=

A

A2A^2

B

B2B^2

C

II

D

A2B2A^2B^2

Answer

B2B^2

Explanation

Solution

Given, (A+B)(AB)=A2B2(A+B)(A-B)=A^{2}-B^{2}
A2AB+BAB2=A2B2\Rightarrow A^{2}-A B+B A-B^{2}=A^{2}-B^{2}
AB=BA\Rightarrow A B=B A
Now, (ABA1)2=(BAA1)2=B2\left(A B A^{-1}\right)^{2}=\left(B A A^{-1}\right)^{2}=B^{2}