Question
Question: If A and B are square matrices of same order then...
If A and B are square matrices of same order then
A
(AB)′=A′B′
B
(AB)′=B′A′
C
AB=0,if∣A∣=0or∣B∣=0
D
AB=0,if∣A∣=IorB=I
Answer
(AB)′=B′A′
Explanation
Solution
A=[aij]n×n,B=[bjk]n×n, AB=[aij]n×n[bjk]n×n=[cik]n×n,
where cik=aijbjk
(AB)′=[cik]n×n′=[cki]n×n=[bkj]n×n[aji]n×n=B′A′
Alternatively, Let A=[1324]2×2,B=[1034]2×2;
1 & 11 \\ 3 & 25 \end{bmatrix}$$ $(AB)^{'} = \begin{bmatrix} 1 & 3 \\ 11 & 25 \end{bmatrix}$ …..(i) and $B^{'}A^{'} = \begin{bmatrix} 1 & 0 \\ 3 & 4 \end{bmatrix}\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 11 & 25 \end{bmatrix}$ …..(ii) From (i) and (ii), $(AB) = B^{'}A^{'}$