Solveeit Logo

Question

Mathematics Question on Determinants

If AA and BB are square matrices of order 33 such that det A=1det\text{ }A=1 and det B=1det\text{ }B=-1 then det (-10AB)det\text{ (-10}\,\text{AB)} is equal to

A

1010

B

10-10

C

1000-1000

D

10001000

Answer

10001000

Explanation

Solution

detA=1,\det \,\,A=1,
detB=1\det \,\,B=-1
det(10AB)=(10)3det(AB)\det \,(-10AB)={{(-10)}^{3}}\,\det \,(AB)
[det(kA)=kndet(A)][\because \,\,\det \,(kA)\,={{k}^{n}}\,\det \,(A)]
(here, n=3n=3 ) =1000det(A)det(B)=-1000\,\det \,(A)\,\det \,(B)
=1+logabc=1+\log \,abc